Advertisement

Applied Physics B

, Volume 98, Issue 4, pp 685–689 | Cite as

Transcription of optical near-fields by photoinduced structural change in single crystal metal complexes for parallel nanophotonic processing

  • N. Tate
  • H. Tokoro
  • K. Takeda
  • W. Nomura
  • T. Yatsui
  • T. Kawazoe
  • M. Naruse
  • S.-i. Ohkoshi
  • M. Ohtsu
Article

Abstract

Exploiting the unique attributes of nanometer-scaled optical near-field interactions in a completely parallel manner is important for nanophotonics for enhancing the throughput in obtaining two-dimensional information on the nanometer scale, as well as for developing more practical and easy characterization or utilization of optical near-fields. In this paper, we propose transcription of optical near-fields, whereby their effects are spatially magnified so as to be detected in optical far fields. By utilizing cyano-bridged metal complexes that exhibit photoinduced structural changes, transcription at the nanometric scale can be realized. We synthesized single crystals of such metal complexes and observed their photoinduced phase changes. We experimentally achieved photoinduced structural changes via optical near-fields, which is the fundamental process in their transcription.

PACS

42.79.Ta 78.67.-n 87.64.mt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002) CrossRefGoogle Scholar
  2. 2.
    M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, M. Ohtsu, IEICE Trans. Electron. E88-C, 1817 (2005) CrossRefGoogle Scholar
  3. 3.
    T. Kawazoe, M. Ohtsu, Y. Inao, R. Kuroda, J. Nanophotonics 1, 011595 (2007) CrossRefGoogle Scholar
  4. 4.
    U. Maheswari Rajagopalan, S. Mononobe, K. Yoshida, M. Yoshimoto, M. Ohtsu, Jpn. J. Appl. Phys. 38, 6713 (1999), part 1 ADSCrossRefGoogle Scholar
  5. 5.
    J. Tanida, Y. Ichioka, Appl. Opt. 27, 2926 (1988) ADSCrossRefGoogle Scholar
  6. 6.
    M. Ishikawa, A. Morita, N. Takayanagi, in Proc. Int. Conf. on Intelligent Robots and Systems, vol. 373 (1992) Google Scholar
  7. 7.
    M. Ohtsu, T. Kawazoe, T. Yatsui, M. Naruse, IEEE J. Sel. Top. Quantum Electron. 14, 1404 (2008) CrossRefGoogle Scholar
  8. 8.
    M. Naruse, T. Yatsui, W. Nomura, N. Hirose, M. Ohtsu, Opt. Exp. 13, 9265 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    B. Lee, J. Kang, K.-Y. Kim, Proc. SPIE 4803, 220 (2002) CrossRefGoogle Scholar
  10. 10.
    O. Sato, S. Hayami, Y. Einaga, Z.Z. Gu, Bull. Chem. Soc. Jpn. 76, 443 (2003) CrossRefGoogle Scholar
  11. 11.
    H. Tokoro, T. Matsuda, T. Nuida, Y. Morimoto, K. Ohoyama, E.D.L.D. Dangui, K. Boukheddaden, S. Ohkoshi, Chem. Mater. 20, 423 (2008) CrossRefGoogle Scholar
  12. 12.
    S. Ohkoshi, H. Tokoro, M. Utsunomiya, M. Mizuno, M. Abe, K. Hashimoto, J. Phys. Chem. B 106, 2423 (2002) CrossRefGoogle Scholar
  13. 13.
    H. Tokoro, S. Ohkoshi, T. Matsuda, K. Hashimoto, Ignor. Chem. 43, 5231 (2004) CrossRefGoogle Scholar
  14. 14.
    H. Tokoro, T. Matsuda, K. Hashimoto, S. Ohkoshi, J. Appl. Phys. 97, 10M508 (2005) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • N. Tate
    • 1
    • 2
  • H. Tokoro
    • 3
    • 4
  • K. Takeda
    • 4
  • W. Nomura
    • 1
    • 2
  • T. Yatsui
    • 1
    • 2
  • T. Kawazoe
    • 1
    • 2
  • M. Naruse
    • 1
    • 2
    • 5
  • S.-i. Ohkoshi
    • 4
  • M. Ohtsu
    • 1
    • 2
  1. 1.Department of Electrical Engineering and Information Systems, School of EngineeringThe University of TokyoTokyoJapan
  2. 2.Nanophotonics Research Center, School of EngineeringThe University of TokyoTokyoJapan
  3. 3.PRESTO, Japan Science and Technology AgencySaitamaJapan
  4. 4.Department of Chemistry, School of ScienceThe University of TokyoTokyoJapan
  5. 5.National Institute of Information and Communications TechnologyTokyoJapan

Personalised recommendations