Applied Physics B

, 97:369 | Cite as

High harmonic generation in a gas-filled hollow-core photonic crystal fiber

  • O. H. Heckl
  • C. R. E. Baer
  • C. Kränkel
  • S. V. Marchese
  • F. Schapper
  • M. Holler
  • T. Südmeyer
  • J. S. Robinson
  • J. W. G. Tisch
  • F. Couny
  • P. Light
  • F. Benabid
  • U. Keller
Open Access
Rapid communication


High harmonic generation (HHG) of intense infrared laser radiation (Ferray et al., J. Phys. B: At. Mol. Opt. Phys. 21:L31, 1988; McPherson et al., J. Opt. Soc. Am. B 4:595, 1987) enables coherent vacuum-UV (VUV) to soft-X-ray sources. In the usual setup, energetic femtosecond laser pulses are strongly focused into a gas jet, restricting the interaction length to the Rayleigh range of the focus. The average photon flux is limited by the low conversion efficiency and the low average power of the complex laser amplifier systems (Keller, Nature 424:831, 2003; Südmeyer et al., Nat. Photonics 2:599, 2008; Röser et al., Opt. Lett. 30:2754, 2005; Eidam et al., IEEE J. Sel. Top. Quantum Electron. 15:187, 2009) which typically operate at kilohertz repetition rates. This represents a severe limitation for many experiments using the harmonic radiation in fields such as metrology or high-resolution imaging. Driving HHG with novel high-power diode-pumped multi-megahertz laser systems has the potential to significantly increase the average photon flux. However, the higher average power comes at the expense of lower pulse energies because the repetition rate is increased by more than a thousand times, and efficient HHG is not possible in the usual geometry. So far, two promising techniques for HHG at lower pulse energies were developed: external build-up cavities (Gohle et al., Nature 436:234, 2005; Jones et al., Phys. Rev. Lett. 94:193, 2005) and resonant field enhancement in nanostructured targets (Kim et al., Nature 453:757, 2008). Here we present a third technique, which has advantages in terms of ease of HHG light extraction, transverse beam quality, and the possibility to substantially increase conversion efficiency by phase-matching (Paul et al., Nature 421:51, 2003; Ren et al., Opt. Express 16:17052, 2008; Serebryannikov et al., Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 70:66611, 2004; Serebryannikov et al., Opt. Lett. 33:977, 2008; Zhang et al., Nat. Phys. 3:270, 2007). The interaction between the laser pulses and the gas occurs in a Kagome-type Hollow-Core Photonic Crystal Fiber (HC-PCF) (Benabid et al., Science 298:399, 2002), which reduces the detection threshold for HHG to only 200 nJ. This novel type of fiber guides nearly all of the light in the hollow core (Couny et al., Science 318:1118, 2007), preventing damage even at intensities required for HHG. Our fiber guided 30-fs pulses with a pulse energy of more than 10 μJ, which is more than five times higher than for any other photonic crystal fiber (Hensley et al., Conference on Lasers and Electro-Optics (CLEO), IEEE Press, New York, 2008).


42.81.Qb 42.65.Ky 42.55.Xi 


  1. 1.
    M. Ferray, A. L’Huillier, X.F. Li, L.A. Lompré, G. Mainfray, C. Manus, Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B: At. Mol. Opt. Phys. 21, L31 (1988) CrossRefADSGoogle Scholar
  2. 2.
    A. McPherson, G. Gibson, H. Jara, U. Johann, T.S. Luk, I.A. McIntyre, K. Boyer, C.K. Rhodes, Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595 (1987) CrossRefADSGoogle Scholar
  3. 3.
    U. Keller, Recent developments in compact ultrafast lasers. Nature 424, 831 (2003) CrossRefADSGoogle Scholar
  4. 4.
    T. Südmeyer, S.V. Marchese, S. Hashimoto, C.R.E. Baer, G. Gingras, B. Witzel, U. Keller, Femtosecond laser oscillators for high-field science. Nat. Photonics 2, 599 (2008) CrossRefGoogle Scholar
  5. 5.
    F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, 131 W 220 fs fiber laser system. Opt. Lett. 30, 2754 (2005) CrossRefADSGoogle Scholar
  6. 6.
    T. Eidam, S. Hadrich, F. Roser, E. Seise, T. Gottschall, J. Rothhardt, T. Schreiber, J. Limpert, A. Tunnermann, A 325-W-average-power fiber CPA system delivering sub-400 fs pulses. IEEE J. Sel. Top. Quantum Electron. 15, 187 (2009) CrossRefGoogle Scholar
  7. 7.
    C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, T.W. Hänsch, A frequency comb in the extreme ultraviolet. Nature 436, 234 (2005) CrossRefADSGoogle Scholar
  8. 8.
    R.J. Jones, K.D. Moll, M.J. Thorpe, J. Ye, Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005) CrossRefADSGoogle Scholar
  9. 9.
    S. Kim, J.H. Jin, Y.J. Kim, I.Y. Park, Y. Kim, S.W. Kim, High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757 (2008) CrossRefADSGoogle Scholar
  10. 10.
    A. Paul, R.A. Bartels, R. Tobey, H. Green, S. Weiman, I.P. Christov, M.M. Murnane, H.C. Kapteyn, S. Backus, Quasi-phase-matched generation of coherent extreme-ultraviolet light. Nature 421, 51 (2003) CrossRefADSGoogle Scholar
  11. 11.
    H. Ren, A. Nazarkin, J. Nold, P.S.J. Russell, Quasi-phase-matched high harmonic generation in hollow core photonic crystal fibers. Opt. Express 16, 17052 (2008) CrossRefADSGoogle Scholar
  12. 12.
    E.E. Serebryannikov, D. von der Linde, A.M. Zheltikov, Phase-matching solutions for high-order harmonic generation in hollow-core photonic-crystal fibers. Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 70, 66611 (2004) Google Scholar
  13. 13.
    E.E. Serebryannikov, D. von der Linde, A.M. Zheltikov, Broadband dynamic phase matching of high-order harmonic generation by a high-peak-power soliton pump field in a gas-filled hollow photonic-crystal fiber. Opt. Lett. 33, 977 (2008) CrossRefADSGoogle Scholar
  14. 14.
    X. Zhang, A.L. Lytle, T. Popmintchev, X. Zhou, H.C. Kapteyn, M.M. Murnane, O. Cohen, Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light. Nat. Phys. 3, 270 (2007) CrossRefGoogle Scholar
  15. 15.
    F. Benabid, J.C. Knight, G. Antonopoulos, P.S.J. Russell, Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399 (2002) CrossRefADSGoogle Scholar
  16. 16.
    F. Couny, F. Benabid, P.J. Roberts, P.S. Light, M.G. Raymer, Generation and photonic guidance of multi-octave optical-frequency combs. Science 318, 1118 (2007) CrossRefADSGoogle Scholar
  17. 17.
    C.J. Hensley, M.A. Foster, B. Shim, A.L. Gaeta, Extremely high coupling and transmission of high-powered-femtosecond pulses in hollow-core photonic band-gap fiber, in Conference on Lasers and Electro-Optics (CLEO) (IEEE Press, New York, 2008), p. paper JFG1 Google Scholar
  18. 18.
    P.S.J. Russell, Photonic-crystal fibers. J. Lightwave Technol. 24, 4729 (2006) CrossRefADSGoogle Scholar
  19. 19.
    I. Christov, H. Kapteyn, M. Murnane, Quasi-phase matching of high-harmonics and attosecond pulses in modulated waveguides. Opt. Express 7, 362 (2000) CrossRefADSGoogle Scholar
  20. 20.
    D.M. Gaudiosi, B. Reagan, T. Popmintchev, M. Grisham, M. Berrill, O. Cohen, B.C. Walker, M.M. Murnane, H.C. Kapteyn, J.J. Rocca, High-order harmonic generation from ions in a capillary discharge. Phys. Rev. Lett. 96, 4 (2006) CrossRefGoogle Scholar
  21. 21.
    E.A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I.P. Christov, A. Aquila, E.M. Gullikson, D.T. Attwood, M.M. Murnane, H.C. Kapteyn, Coherent soft X-ray generation in the water window with quasi-phase matching. Science 302, 95 (2003) CrossRefADSGoogle Scholar
  22. 22.
    G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, B. Mangan, Hollow core photonic crystal fibers for beam delivery. Opt. Express 12, 1477 (2004) CrossRefADSGoogle Scholar
  23. 23.
    J. West, C. Smith, N. Borrelli, D. Allan, K. Koch, Surface modes in air-core photonic band-gap fibers. Opt. Express 12, 1485 (2004) CrossRefADSGoogle Scholar
  24. 24.
    F. Schäfers, The BESSY raytrace program RAY, in Modern Developments in X-Ray and Neutron Optics (Springer, Berlin/Heidelberg, 2008), pp. 9–41 CrossRefGoogle Scholar
  25. 25.
    A. L’Huillier, P. Balcou, L.A. Lompre, Coherence and resonance effects in high-order harmonic-generation. Phys. Rev. Lett. 68, 166 (1992) CrossRefADSGoogle Scholar
  26. 26.
    D.C. Yost, T.R. Schibli, J. Ye, Efficient output coupling of intracavity high-harmonic generation. Opt. Lett. 33, 1099 (2008) CrossRefADSGoogle Scholar
  27. 27.
    J. Seres, V.S. Yakovlev, E. Seres, C. Streli, P. Wobrauschek, C. Spielmann, F. Krausz, Coherent superposition of laser-driven soft-X-ray harmonics from successive sources. Nat. Phys. 3, 878 (2007) CrossRefGoogle Scholar
  28. 28.
    T.E. Dimmick, G. Kakarantzas, T.A. Birks, P.S.J. Russell, Carbon dioxide laser fabrication of fused-fiber couplers and tapers. Appl. Opt. 38, 6845 (1999) CrossRefADSGoogle Scholar
  29. 29.
    J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D.H. Sutter, T. Dekorsy, Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry. Opt. Express 16, 20530 (2008) CrossRefADSGoogle Scholar
  30. 30.
    F. Brunner, E. Innerhofer, S.V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, U. Keller, Powerful red-green-blue laser source pumped with a mode-locked thin disk laser. Opt. Lett. 29, 1921 (2004) CrossRefADSGoogle Scholar
  31. 31.
    W. Chao, B.D. Harteneck, J.A. Liddle, E.H. Anderson, D.T. Attwood, Soft-X-ray microscopy at a spatial resolution better than 15 nm. Nature 435, 1210 (2005) CrossRefADSGoogle Scholar
  32. 32.
    J.D. Koralek, J.F. Douglas, N.C. Plumb, Z. Sun, A.V. Fedorov, M.M. Murnane, H.C. Kapteyn, S.T. Cundiff, Y. Aiura, K. Oka, H. Eisaki, D.S. Dessau, Laser based angle-resolved photoemission, the sudden approximation, and quasiparticle-like spectral peaks in Bi2Sr2CaCu2O8. Phys. Rev. Lett. 96, 017005 (2006) CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • O. H. Heckl
    • 1
  • C. R. E. Baer
    • 1
  • C. Kränkel
    • 1
  • S. V. Marchese
    • 1
  • F. Schapper
    • 1
  • M. Holler
    • 1
  • T. Südmeyer
    • 1
  • J. S. Robinson
    • 2
    • 3
  • J. W. G. Tisch
    • 4
  • F. Couny
    • 5
  • P. Light
    • 5
  • F. Benabid
    • 5
  • U. Keller
    • 1
  1. 1.Department of Physics, Institute for Quantum ElectronicsETH ZurichZurichSwitzerland
  2. 2.Department of PhysicsUniversity of California at BerkeleyBerkeleyUSA
  3. 3.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.Quantum Optics and Laser Science Group, Blackett LaboratoryImperial College LondonLondonUK
  5. 5.Department of PhysicsUniversity of BathBathUK

Personalised recommendations