Advertisement

Applied Physics B

, Volume 98, Issue 2–3, pp 573–579 | Cite as

The relay propagation of partially coherent cosh–Gaussian–Schell beams in turbulent atmosphere

Article

Abstract

We have studied the relay propagation of a partially coherent cosh–Gaussian–Schell beam in turbulent atmosphere. Analytical expressions for both the cross-spectral density at the relay system and average intensity at the target are derived. By using the analytical expressions some special cases are studied and some numerical simulation comparisons are made, especially the effects of the coherence of the beam, turbulence strength, aperture and its size on the relay propagation. Our study shows that the effects of diffraction and coherence of initial beam on the intensity profiles at the relay system are so small that they can be neglected when the effects due to turbulence are large enough. Even though the correction to the receiving beam at relay system is important, it is not necessary to improve the receiving beam when the effect of turbulence over the travel path is strong. A high peak intensity at target can be obtained by optimizing these factors, such as propagation distance, aperture and spatial correlation length.

PACS

42.68.Bz 42.79.Ag 42.25.Fx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Tolker-Nielsen, G. Oppenhauser, Proc. SPIE 4635, 1–15 (2002) CrossRefADSGoogle Scholar
  2. 2.
    E.A. Duff, D.C. Washburn, Proc. SPIE 5413, 137 (2004) CrossRefADSGoogle Scholar
  3. 3.
    M. Hartman, S. Restaino, J. Baker, D. Payne, J. Bukley, Proc. SPIE 0277 (2002) Google Scholar
  4. 4.
  5. 5.
    J.D. Barchers, D.L. Fried, J. Opt. Soc. Am. A 19, 1779 (2002) CrossRefADSGoogle Scholar
  6. 6.
    H.T. Eyyuboglu, Appl. Phys. B 94(3), 489 (2009) CrossRefADSGoogle Scholar
  7. 7.
    Y. Cai, S. He, Opt. Express 14, 1353 (2006) CrossRefADSGoogle Scholar
  8. 8.
    H.T. Eyyuboğlu, Y. Baykal, Y. Cai, J. Opt. Soc. Am. A 24(9), 2891 (2007) CrossRefADSGoogle Scholar
  9. 9.
    H.T. Eyyuboğlu, Y. Baykal, Opt. Express 12, 4659 (2004) CrossRefADSGoogle Scholar
  10. 10.
    L.C. Andrews, R.L. Phillips, R.J. Sasiela, R.R. Parenti, Opt. Eng. 45, 076001 (2006) CrossRefADSGoogle Scholar
  11. 11.
    L.C. Andrews, R.L. Phillips, R.J. Sasiela, R.R. Parenti, Proc. SPIE 5793, 28 (2005) CrossRefADSGoogle Scholar
  12. 12.
    X. Du, D. Zhao, Opt. Express 17, 4257 (2009) CrossRefADSGoogle Scholar
  13. 13.
    Y. Zhu, D. Zhao, X. Du, Opt. Express 16, 18437 (2008) CrossRefADSGoogle Scholar
  14. 14.
    X. Ji, E. Zhang, B. Lu, Opt. Commun. 259, 1 (2006) CrossRefADSGoogle Scholar
  15. 15.
    J. Pu, Chin. Phys. Lett. 4, 196 (2006) Google Scholar
  16. 16.
    X. Chu, G. Zhou, Opt. Express 15, 7697 (2007) CrossRefADSGoogle Scholar
  17. 17.
    A.A. Tovar, L.W. Casperson, J. Opt. Soc. Am. A 15, 2425 (1998) CrossRefADSGoogle Scholar
  18. 18.
    S.C.H. Wang, M.A. Plonus, J. Opt. Soc. Am. 69, 1297 (1979) CrossRefADSGoogle Scholar
  19. 19.
    J.J. Wen, M.A. Breazeale, J. Acoust. Soc. Am. 83, 1752 (1988) CrossRefADSGoogle Scholar
  20. 20.
    Y. Zhang, Opt Commun. 248, 317 (2005) CrossRefADSGoogle Scholar
  21. 21.
    Z. Mei, D. Zhao, J. Gu, Opt. Commun. 267, 58 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.School of SciencesZhejiang Forestry UniversityLin’anChina

Personalised recommendations