Applied Physics B

, 97:339

Spectroscopy and lasing of cryogenically cooled Yb, Na:CaF2

  • A. Pugžlys
  • G. Andriukaitis
  • D. Sidorov
  • A. Irshad
  • A. Baltuška
  • W. J. Lai
  • P. B. Phua
  • L. Su
  • J. Xu
  • H. Li
  • R. Li
  • S. Ališauskas
  • A. Marcinkevičius
  • M. E. Fermann
  • L. Giniūnas
  • R. Danielius
Article

Abstract

Absorption, photoluminescence and cw-lasing properties of a novel Na+-codoped Yb3+:CaF2 laser crystal are investigated in the temperature range from 10 K to 290 K. Cryogenic cooling leads to the disappearance of the ground-state absorption in the spectral region above 1000 nm and a substantial increase of emission and absorption cross-sections. A particular advantage of the Yb3+, Na+-codoped CaF2 crystal lies in the possibility of a direct pumping in the vicinity of the zero phonon line while nearly perfectly avoiding an overlap with the stimulated emission. Further advantages of the low-temperature operation are demonstrated by achieving a close to the theoretical limit slope efficiency of 92% in a cw-laser operation with an output coupler of 28%. By seeding stretched pulses from a femtosecond Yb fiber oscillator into a cryogenically cooled DPSS Yb3+, Na+:CaF2 regenerative amplifier, we obtain >3-mJ pulses at a 1-kHz repetition rate with a spectral bandwidth exceeding 12 nm. The pulses are compressed with a single grating compressor to 173 fs as verified by SHG FROG. Shaping of the spectral amplitude of the seed and active control of the higher-order phase is shown to be crucial for obtaining sub-200-fs pulses at multi-mJ energies.

PACS

42.55.Rz 42.55.Xi 42.60.Da 42.60.Lh 42.65.Re 

References

  1. 1.
    T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000) CrossRefADSGoogle Scholar
  2. 2.
    A. Dubietis, R. Butkus, A.P. Piskarskas, IEEE J. Sel. Top. Quantum Electron. 12, 163 (2006) CrossRefGoogle Scholar
  3. 3.
    G.A. Mourou, T. Tajima, S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006) CrossRefADSGoogle Scholar
  4. 4.
    A. Jouini, A. Brenier, Y. Guyot, G. Boulon, H. Sato, A. Yoshikawa, K. Fukuda, T. Fukuda, Cryst. Growth Des. 8, 808 (2008) CrossRefGoogle Scholar
  5. 5.
    A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J.L. Doualan, R. Moncorge, Opt. Lett. 29, 2767 (2004) CrossRefADSGoogle Scholar
  6. 6.
    J. Du, X. Liang, Y. Wang, L. Su, W. Feng, E. Dai, Z. Xu, J. Xu, Opt. Express 13, 7970 (2005) CrossRefADSGoogle Scholar
  7. 7.
    F. Druon, F. Balembois, P. Georges, Opt. Express 12, 5005 (2004) CrossRefADSGoogle Scholar
  8. 8.
    L. Su, J. Xu, Y. Xue, C. Wang, L. Chai, X. Xu, G. Zhao, Opt. Express 13, 5635 (2005) CrossRefADSGoogle Scholar
  9. 9.
    S. Biswal, J. Nees, A. Nishimura, H. Takuma, G. Mourou, Opt. Commun. 160, 92 (1999) CrossRefADSGoogle Scholar
  10. 10.
    H. Liu, J. Nees, G. Mourou, S. Biswal, G.J. Spühler, U. Keller, N.V. Kuleshov, Opt. Commun. 203, 315 (2002) CrossRefADSGoogle Scholar
  11. 11.
    A. Beyertt, D. Nickel, A. Giesen, Appl. Phys. B 80, 655 (2005) CrossRefADSGoogle Scholar
  12. 12.
    P. Raybaut, F. Balembois, F. Druon, P. Georges, IEEE J. Quantum Electron. 41, 415 (2005) CrossRefADSGoogle Scholar
  13. 13.
    M. Siebold, M. Hornung, S. Bock, J. Hein, M.C. Kaluza, J. Wemans, R. Uecker, Appl. Phys. B 89, 543 (2007) CrossRefADSGoogle Scholar
  14. 14.
    M. Siebold, M. Hornung, R. Boedefeld, S. Podleska, S. Klingebiel, C. Wandt, F. Krausz, S. Karsch, R. Uecker, A. Jochmann, J. Hein, M.C. Kaluza, Opt. Lett. 33, 2770 (2008) CrossRefADSGoogle Scholar
  15. 15.
    W.F. Krupke, IEEE J. Sel. Top. Quantum Electron. 6, 1287 (2000) CrossRefGoogle Scholar
  16. 16.
    T.Y. Fan, A. Sanchez, IEEE J. Quantum Electron. 26, 311 (1990) CrossRefADSGoogle Scholar
  17. 17.
    P. Sorokin, M. Stevenson, Phys. Rev. Lett. 5, 557 (1960) CrossRefADSGoogle Scholar
  18. 18.
    G. Boyd, R. Collins, S. Porto, A. Yariv, W. Hargreaves, Phys. Rev. Lett. 8, 269 (1962) CrossRefADSGoogle Scholar
  19. 19.
    R.J. Keyes, T.M. Quist, Appl. Phys. Lett. 4, 59 (1964) CrossRefADSGoogle Scholar
  20. 20.
    M.J. Weber, Handbook of Optical Materials (CRC Press, Boca Raton, 2003) Google Scholar
  21. 21.
    L. Su, J. Xu, H. Li, L. Wen, Y. Zhu, Z. Zhao, Y. Dong, G. Zhou, J. Si, Chem. Phys. Lett. 406, 254 (2005) CrossRefADSGoogle Scholar
  22. 22.
    L. Su, J. Xun, H. Li, W. Yang, Z. Zhao, J. Si, Y. Dong, G. Zhou, Opt. Lett. 30, 1003 (2005) CrossRefADSGoogle Scholar
  23. 23.
    D.J. Ripin, J.R. Ochoa, R.L. Aggarwal, T.-Y. Fan, IEEE J. Quantum Electron. 41, 1274 (2005) CrossRefADSGoogle Scholar
  24. 24.
    S. Tokita, J. Kawanaka, Y. Izawa, M. Fujita, T. Kawashima, Opt. Express 15, 3955 (2007) CrossRefADSGoogle Scholar
  25. 25.
    J. Kawanaka, K. Yamakawa, H. Nishioka, K. Ueda, Opt. Lett. 28, 2121 (2003) CrossRefADSGoogle Scholar
  26. 26.
    K. Ogawa, Y. Akahane, M. Aoyama, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, K. Yamakawa, Opt. Express 15, 8598 (2007) CrossRefADSGoogle Scholar
  27. 27.
    D.C. Brown, IEEE J. Quantum Electron. 34, 2393 (1998) CrossRefADSGoogle Scholar
  28. 28.
    D.C. Brown, IEEE J. Sel. Top. Quantum Electron. 11, 587 (2005) CrossRefGoogle Scholar
  29. 29.
    G. Boulon, in Advances in Spectroscopy for Lasers and Sensing, ed. by B. Bartolo, O. Forte (Springer, Dordrecht, 2006), pp. 83–102 CrossRefGoogle Scholar
  30. 30.
    M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, G. Boulon, J. Phys., Condens. Matter 16, 1501 (2004) CrossRefADSGoogle Scholar
  31. 31.
    V. Petit, P. Camy, J.-L. Doualan, X. Portier, R. Moncorge, Phys. Rev. B 78, 085131 (2008) CrossRefADSGoogle Scholar
  32. 32.
    P.-H. Haumesser, R. Gaume, B. Viana, D. Vivien, J. Opt. Soc. Am. B 19, 2365 (2002) CrossRefADSGoogle Scholar
  33. 33.
    J. Kawanaka, K. Yamakawa, H. Nishioka, K. Ueda, Opt. Express 10, 455 (2002) ADSGoogle Scholar
  34. 34.
    A.E. Siegman, Lasers (University Science Books, 1986) Google Scholar
  35. 35.
    W. Köchner, Solid-state laser engineering, 6th revised and updated ed: Springer Science+Business Media, Inc., 2006 Google Scholar
  36. 36.
    J.A. Caird, S.A. Payne, P.R. Staver, A.J. Ramponi, L.L. Chase, W.F. Krupke, IEEE J. Quantum Electron. 24, 1077 (1988) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • A. Pugžlys
    • 1
  • G. Andriukaitis
    • 1
  • D. Sidorov
    • 1
  • A. Irshad
    • 1
  • A. Baltuška
    • 1
  • W. J. Lai
    • 3
  • P. B. Phua
    • 3
  • L. Su
    • 4
  • J. Xu
    • 4
  • H. Li
    • 4
  • R. Li
    • 5
  • S. Ališauskas
    • 1
    • 2
  • A. Marcinkevičius
    • 6
  • M. E. Fermann
    • 6
  • L. Giniūnas
    • 7
  • R. Danielius
    • 7
  1. 1.Photonics InstituteVienna University of TechnologyViennaAustria
  2. 2.Laser Research CenterVilnius UniversityVilniusLithuania
  3. 3.Nanyang Technological UniversitySingaporeSingapore
  4. 4.Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  5. 5.Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  6. 6.IMRA America Inc.Ann ArborUSA
  7. 7.Light Conversion Ltd.VilniusLithuania

Personalised recommendations