Applied Physics B

, Volume 98, Issue 4, pp 691–696 | Cite as

Simultaneous magneto-optical trapping of lithium and ytterbium atoms towards production of ultracold polar molecules

  • M. Okano
  • H. Hara
  • M. Muramatsu
  • K. Doi
  • S. Uetake
  • Y. Takasu
  • Y. Takahashi
Article

Abstract

We have successfully implemented the first simultaneous magneto-optical trapping (MOT) of lithium (6Li) and ytterbium (174Yb) atoms towards production of ultracold polar molecules of LiYb. For this purpose, we developed the dual atomic oven which contains both atomic species as an atom source and successfully observed the spectra of the Li and Yb atoms in the atomic beams from the dual atomic oven. We constructed the vacuum chamber including the glass cell with the windows made of zinc selenium (ZnSe) for the CO2 lasers, which are the useful light sources of optical trapping for evaporative and sympathetic cooling. Typical atom numbers and temperatures in the compressed MOT are 7×103 atoms, 640 μK for 6Li, 7×104 atoms, and 60 μK for 174Yb, respectively.

PACS

37.10.De 42.50.-p 42.62.Fi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995) ADSCrossRefGoogle Scholar
  2. 2.
    K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995) ADSCrossRefGoogle Scholar
  3. 3.
    B. DeMarco, D.S. Jin, Science 285, 1703 (1999) CrossRefGoogle Scholar
  4. 4.
    J. Doyle, B. Friedrich, R.V. Krems, F. Masnou-Seeuws, Eur. Phys. J. D 31, 149 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    R.V. Krems, B. Friedrich, W.C. Stwalley, Cold Molecules: Theory, Experiment, Applications (CRC Press, Boca Raton, 2009) Google Scholar
  6. 6.
    D. DeMille, Phys. Rev. Lett. 88, 067901 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    M. Lewenstein, Nat. Phys. 2, 309 (2006) CrossRefGoogle Scholar
  8. 8.
    A. Micheli, G.K. Brennen, P. Zoller, Nat. Phys. 2, 341 (2006) CrossRefGoogle Scholar
  9. 9.
    M. Okano, H. Hara, Y. Takasu, Y. Takahashi, in The 21st Century COE Symp., vol. 48, Kyoto Univ. Clock Tower Centennial Hall, 2007 Google Scholar
  10. 10.
    N. Nemitz, F. Baumer, F. Münchow, S. Tassy, A. Görlitz, Phys. Rev. A 79, 061403(R) (2009) ADSCrossRefGoogle Scholar
  11. 11.
    B. Marcelis, S.J.J.M.F. Kokkelmans, G.V. Shlyapnikov, D.S. Petrov, Phys. Rev. A 77, 032707 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    G. Modugno, G. Ferrari, G. Roati, R.J. Brecha, A. Simoni, M. Inguscio, Science 294, 1320 (2001) ADSCrossRefGoogle Scholar
  13. 13.
    T. Köhler, K. Góral, P.S. Julienne, Rev. Mod. Phys. 78, 1311 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    K.-K. Ni, S. Ospelkaus, M.H.G. de Miranda, A. Pe’er, B. Neyenhuis, J.J. Zirbel, S. Kotochigova, P.S. Julienne, D.S. Jin, J. Ye, Science 322, 231 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    L. Windholz, M. Musso, G. Zerza, H. Jäger, Phys. Rev. A 46, 5812 (1992) ADSCrossRefGoogle Scholar
  16. 16.
    J. Labaziewicz, P. Richerme, K.R. Brown, I.L. Chuang, K. Hayasaka, Opt. Lett. 32, 572 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    T. Kuwamoto, K. Honda, Y. Takahashi, T. Yabuzaki, Phys. Rev. A 60, R745 (1999) ADSCrossRefGoogle Scholar
  18. 18.
    S. Uetake, A. Yamaguchi, S. Kato, Y. Takahashi, Appl. Phys. B 92, 33 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • M. Okano
    • 1
  • H. Hara
    • 1
  • M. Muramatsu
    • 1
  • K. Doi
    • 1
  • S. Uetake
    • 1
    • 2
  • Y. Takasu
    • 1
  • Y. Takahashi
    • 1
    • 2
  1. 1.Department of Physics, Graduate School of ScienceKyoto UniversityKyotoJapan
  2. 2.CRESTJapan Science and Technology AgencyKawaguchiJapan

Personalised recommendations