Applied Physics B

, Volume 98, Issue 1, pp 27–31 | Cite as

High-energy soliton pulse generation with a passively mode-locked Er/Yb-doped multifilament-core fiber laser

  • B. OrtaçEmail author
  • J. Limpert
  • S. Jetschke
  • S. Unger
  • V. Reichel
  • J. Kirchhof
  • A. Tünnermann


We report the generation of high-energy short pulses from a mode-locked erbium/ytterbium-doped large-mode-area multifilament-core fiber laser operating in the purely anomalous dispersion regime. The self-starting fiber laser emits 400 mW of average output power at a pulse repetition rate of 44 MHz, corresponding to a pulse energy of 9.1 nJ. The laser produces near transform-limited output pulses with pulse duration of 1.6 ps, corresponding to 5 kW peak power. This new type of low-nonlinearity fibers demonstrates the power and energy scaling potential of fiber-based short pulse lasers in the eye-safe region.


42.55.Wd 42.65.Re 42.81.Bm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Ortaç, M. Baumgartl, J. Limpert, A. Tünnermann, Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers. Opt. Lett. 34, 1585 (2009) CrossRefADSGoogle Scholar
  2. 2.
    I.N. Duling, All-fiber ring soliton laser mode locked with a nonlinear mirror. Opt. Lett. 15, 539 (1991) ADSGoogle Scholar
  3. 3.
    R.P. Davey, N. Langford, A.I. Ferguson, Interacting solitons in erbium fiber laser. Electron. Lett. 27, 1257 (1991) CrossRefGoogle Scholar
  4. 4.
    K. Tamura, L.E. Nelson, H.A. Haus, E.P. Ippen, Soliton versus nonsoliton operation of fiber ring lasers. Appl. Phys. Lett. 64, 149 (1994) CrossRefADSGoogle Scholar
  5. 5.
    K. Tamura, E.P. Ippen, H.A. Haus, Pulse dynamics in stretched-pulse fiber lasers. Appl. Phys. Lett. 67, 158 (1995) CrossRefADSGoogle Scholar
  6. 6.
    G. Lenz, K. Tamura, H.A. Haus, E.P. Ippen, All-solid-state femtosecond source at 1.55 μm. Opt. Lett. 20, 1289 (1995) CrossRefADSGoogle Scholar
  7. 7.
    L.M. Zhao, D.Y. Tang, J. Wu, Gain-guided soliton in a positive group-dispersion fiber laser. Opt. Lett. 31, 1788 (2006) CrossRefADSGoogle Scholar
  8. 8.
    A. Cabasse, B. Ortaç, G. Martel, A. Hideur, J. Limpert, Dissipative solitons in a passively mode-locked Er-doped fiber laser with strong normal dispersion. Opt. Express 16, 19322 (2008) CrossRefADSGoogle Scholar
  9. 9.
    A. Ruehl, V. Kuhn, D. Wandt, D. Kracht, Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ. Opt. Express 16, 3130 (2008) CrossRefADSGoogle Scholar
  10. 10.
    M. Baumgartl, B. Ortaç, J. Limpert, A. Tünnermann, Passively mode-locked chirped-pulse fiber oscillators: Study on dispersion, in OSA Topical Meeting on Advanced Solid-State Photonics (ASSP, 2009), Paper TuB3 Google Scholar
  11. 11.
    M.E. Fermann, K. Sugden, I. Bennion, Generation of 10 nJ picosecond pulses from a mode-locked fiber laser. Electron. Lett. 31, 194 (1995) CrossRefGoogle Scholar
  12. 12.
    B. Ortaç, J. Limpert, A. Tünnermann, High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime. Opt. Lett. 32, 2149 (2007) CrossRefADSGoogle Scholar
  13. 13.
    C. Lecaplain, C. Chédot, A. Hideur, B. Ortaç, J. Limpert, High-power all-normal-dispersion femtosecond pulse generation from an Yb-doped large-mode-area microstructure fiber laser. Opt. Lett. 32, 2738 (2007) CrossRefADSGoogle Scholar
  14. 14.
    B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, A. Hideur, High-energy femtosecond Yb-doped dispersion compensation free fiber laser. Opt. Express 15, 10725 (2007) CrossRefADSGoogle Scholar
  15. 15.
    M.E. Fermann, A. Galvanauskas, M. Hofer, Ultrafast pulse sources based on multi-mode optical fibers. Appl. Phys. B 70, S13 (2000) ADSGoogle Scholar
  16. 16.
    N.R.G. Broderick, H.L. Offerhaus, D.J. Richardson, R.A. Sammut, Power scaling in passively mode locked large mode area fiber lasers. IEEE Photon. Technol. Lett. 10, 1718 (1998) CrossRefADSGoogle Scholar
  17. 17.
    A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K. Ueda, J.R. Folkenberg, J. Broeng, Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 μm. Opt. Express 13, 1221 (2005) CrossRefADSGoogle Scholar
  18. 18.
    J.C. Jasapara, M.J. Andrejco, A. DeSantolo, A.D. Yablon, Z. Varallyay, J.W. Nicholson, J.M. Fini, D.J. Giovanni, C. Headley, E. Monberg, F.V. DiMarcello, Diffraction limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers. J. Sel. Top. Quantum Electron. 15, 3 (2009) CrossRefGoogle Scholar
  19. 19.
    G. Canat, S. Jetschke, S. Unger, L. Lombard, P. Bourdon, J. Kirchhof, V. Jolivet, A. Dolfi, O. Vasseur, Multifilament-core fibers for high energy pulse amplification at 1.5 μm with excellent beam quality. Opt. Lett. 33, 2701 (2008) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • B. Ortaç
    • 1
    Email author
  • J. Limpert
    • 1
  • S. Jetschke
    • 2
  • S. Unger
    • 2
  • V. Reichel
    • 2
  • J. Kirchhof
    • 2
  • A. Tünnermann
    • 1
    • 3
  1. 1.Institute of Applied PhysicsFriedrich Schiller University JenaJenaGermany
  2. 2.Institute of Photonic Technology (IPHT)JenaGermany
  3. 3.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany

Personalised recommendations