Applied Physics B

, 97:701 | Cite as

Remote sensing with intense filaments enhanced by adaptive optics

  • J.-F. Daigle
  • Y. Kamali
  • M. Châteauneuf
  • G. Tremblay
  • F. Théberge
  • J. Dubois
  • G. Roy
  • S. L. Chin


A method involving a closed loop adaptive optic system is investigated as a tool to significantly enhance the collected optical emissions, for remote sensing applications involving ultrafast laser filamentation. The technique combines beam expansion and geometrical focusing, assisted by an adaptive optics system to correct the wavefront aberrations. Targets, such as a gaseous mixture of air and hydrocarbons, solid lead and airborne clouds of contaminated aqueous aerosols, were remotely probed with filaments generated at distances up to 118 m after the focusing beam expander. The integrated backscattered signals collected by the detection system (15–28 m from the filaments) were increased up to a factor of 7, for atmospheric N2 and solid lead, when the wavefronts were corrected by the adaptive optic system. Moreover, an extrapolation based on a simplified version of the LIDAR equation showed that the adaptive optic system improved the detection distance for N2 molecular fluorescence, from 45 m for uncorrected wavefronts to 125 m for corrected.


42.62.Fi 42.68.wt 95.75.Qr 


  1. 1.
    Emissions trading. United nations framework convention on climate change (2009).
  2. 2.
    S. Palanco, L.M. Cabalín, D. Romero, J.J. Laserna, Infrared laser ablation and atomic emission spectrometry of stainless steel at high temperatures. Anal. At. Spectrom. 14, 1883–1887 (1999) CrossRefGoogle Scholar
  3. 3.
    R.M. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, Florida 1992) Google Scholar
  4. 4.
    A. Couairon, A. Myzyrowicz, Femtosecond filamentation in transparent media. Phys. Rep. 441, 47 (2007) CrossRefADSGoogle Scholar
  5. 5.
    J. Kasparian, J.-P. Wolf, Physics and applications of atmospheric nonlinear optics and filamentation. Opt. Express 16, 466 (2008) CrossRefADSGoogle Scholar
  6. 6.
    L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.-P. Wolf, Ultrashort filaments of light in weakly-ionized, optically-transparent media. Rep. Prog. Phys. 70, 1633–1713 (2007) CrossRefADSGoogle Scholar
  7. 7.
    S.L. Chin, S.A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V.P. Kandidov, O.G. Kosareva, H. Schroeder, The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges. Can. J. Phys. 83, 863–905 (2005) CrossRefADSGoogle Scholar
  8. 8.
    A. Braun, G. Korn, X. Liu, D. Du, J. Squier, G. Mourou, Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20, 73 (1995) CrossRefADSGoogle Scholar
  9. 9.
    K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, L. Wöste, Long-distance remote laser-induced breakdown spectroscopy using filamentation in air. Appl. Phys. Lett. 85(18), 3977 (2004) CrossRefADSGoogle Scholar
  10. 10.
    S.L. Chin, H.L. Xu, Q. Luo, F. Theberge, W. Liu, J.F. Daigle, Y. Kamali, P. Simard, J. Bernhardt, S. Hoseinni, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V.P. Kandidov, N. Akozbek, A. Becker, G. Roy, P. Mathieu, J.R. Simard, M. Châteauneuf, J. Dubois, Filamentation ‘remote’ sensing of chemical and biological agents/pollutants using only one femtosecond laser. Appl. Phys. B 95, 1 (2009) CrossRefADSGoogle Scholar
  11. 11.
    M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A.P. Hatzes, R. Sauerbrey, L. Wöste, J.-P. Wolf, Kilometer-range nonlinear propagation of femtosecond laser pulses. Phys. Rev. E 69, 036607 (2004) CrossRefADSGoogle Scholar
  12. 12.
    J.H. Marburger, Theory of self focusing. Prog. Quantum Electron. 4, 35 (1975) CrossRefADSGoogle Scholar
  13. 13.
    J. Kasparian, R. Sauerbrey, S.L. Chin, The critical laser intensity of self-guided light filaments in air. Appl. Phys. B 71, 877 (2000) ADSGoogle Scholar
  14. 14.
    A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C.M. Bowden, S.L. Chin, Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas. Appl. Phys. B 73, 287–290 (2001) ADSGoogle Scholar
  15. 15.
    P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, Remote sensing of the atmosphere using ultrashort laser pulses. Appl. Phys. B 71, 573 (2000) CrossRefADSGoogle Scholar
  16. 16.
    S.A. Hosseini, Q. Luo, B. Ferland, W. Liu, S.L. Chin, O.G. Kosareva, N.A. Panov, N. Aközbek, V.P. Kandidov, Competition of multiple filaments during the propagation of intense femtosecond laser pulses. Phys. Rev. A 70, 033802 (2004) CrossRefADSGoogle Scholar
  17. 17.
    R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. Li, A. Lindinger, L. Wöste, P. Béjot, L. Bonacina, J.-P. Wolf, Optimal control of filamentation in air. Appl. Phys. Lett. 89, 171117 (2006) CrossRefADSGoogle Scholar
  18. 18.
    G. Heck, J. Sloss, R.J. Levis, Adaptive control of the spatial position of white light filaments in an aqueous solution. Opt. Commun. 259(1), 216 (2006) CrossRefADSGoogle Scholar
  19. 19.
    T. Baumert, T. Brixner, V. Seyfried, M. Strehle, G. Gerber, Femtosecond pulse shaping by an evolutionary algorithm with feedback. Appl. Phys. B 65(6), 779 (1997) CrossRefADSGoogle Scholar
  20. 20.
    F. Théberge, W. Liu, P.Tr. Simard, A. Becker, S.L. Chin, Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing. Phys. Rev. E 74, 036406 (2006) CrossRefADSGoogle Scholar
  21. 21.
    W. Liu, F. Théberge, J.-F. Daigle, P.T. Simard, S.M. Sarifi, Y. Kamali, H.L. Xu, S.L. Chin, An efficient control of ultrashort laser filament location in air for the purpose of remote sensing. Appl. Phys. B 85(1), 55 (2006) CrossRefADSGoogle Scholar
  22. 22.
    G. Fibich, Y. Sivan, Y. Ehrlich, E. Louzon, M. Fraenkel, S. Eisenmann, Y. Katzir, A. Zigler, Control of the collapse distance in atmospheric propagation. Opt. Express. 14(12), 4946–4957 (2006) CrossRefADSGoogle Scholar
  23. 23.
    H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.P. Wolf, L. Wöste, Teramobile: a mobile femtosecond-terawatt laser and detection system. Eur. Phys. J. A 20, 183 (2002) CrossRefGoogle Scholar
  24. 24.
    Z. Jin, J. Zhang, M.H. Xu, X. Lu, Y.T. Li, Z.H. Wang, Z.Y. Wei, X.H. Yuan, W. Yu, Control of filamentation induced by femtosecond laser pulses propagating in air. Opt. Express. 13, 10424 (2005) CrossRefADSGoogle Scholar
  25. 25.
    J.-F. Daigle, Y. Kamali, J. Bernhardt, W. Liu, C. Marceau, A. Azarm, S.L. Chin, Generation of powerful filaments at a long distance using adaptive optics. Opt. Commun. 281, 3327 (2008) CrossRefADSGoogle Scholar
  26. 26.
    Night N Adaptive Optics Ltd. (2009).
  27. 27.
    R.K. Tyson, Adaptive Optics Engineering Handbook (Marcel Dekker, New York, 2000) Google Scholar
  28. 28.
  29. 29.
    Schott UG11 transmission data sheet. (2009).
  30. 30.
    J.-F. Daigle, P. Mathieu, G. Roy, J.-R. Simard, S.L. Chin, Multi-constituents detection in contaminated aerosol clouds using remote filament-induced breakdown spectroscopy. Opt. Commun. 278, 147 (2007) CrossRefADSGoogle Scholar
  31. 31.
    C. Favre, V. Boutou, S.C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R.K. Chang, L. Wöste, J.-P. Wolf, White light nanosource with directional emission. Phys. Rev. Lett. 89(3), 035002 (2002) CrossRefADSGoogle Scholar
  32. 32.
    Q. Luo, S.A. Hosseini, W. Liu, J.-F. Gravel, O.G. Kosareva, N.A. Panov, N. Aközbek, V.P. Kandidov, G. Roy, S.L. Chin, Effect of beam diameter on the propagation of intense femtosecond laser pulses. Appl. Phys. B 80, 35–38 (2005) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • J.-F. Daigle
    • 1
  • Y. Kamali
    • 1
  • M. Châteauneuf
    • 2
  • G. Tremblay
    • 3
  • F. Théberge
    • 2
  • J. Dubois
    • 2
  • G. Roy
    • 2
  • S. L. Chin
    • 1
  1. 1.Centre d’Optique, Photonique et Laser (COPL) & Département de Physique, de Génie Physique et d’OptiqueUniversité LavalQuébecCanada
  2. 2.Defense Research and Development Canada (DRDC)ValcartierCanada
  3. 3.AEREX Avionique Inc.BreakeyvilleCanada

Personalised recommendations