Applied Physics B

, 97:321

Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm, Ho:KYW laser crystal

  • A. A. Lagatsky
  • F. Fusari
  • S. V. Kurilchik
  • V. E. Kisel
  • A. S. Yasukevich
  • N. V. Kuleshov
  • A. A. Pavlyuk
  • C. T. A. Brown
  • W. Sibbett
Article

Abstract

The growth, spectroscopy and lasing performance of a novel Tm, Ho:KY(WO4)2 crystal are reported. The peak emission cross-section of the Ho3+5I75I8 transition and lifetime of the 5I7 excited state were determined to be 4.8×10−20 cm2 and 1.8 ms, respectively, in a spectral range at around 2060 nm. Using a Ti:sapphire laser as a pump source at 802 nm, a maximum slope efficiency of up to 44% has been achieved with a corresponding output power of 460 mW at 2056 nm during continuous-wave operation of a Tm, Ho:KY(WO4)2 laser at room temperature. A tuning range of 1890–2080 nm has been demonstrated.

PACS

42.70.Hj 42.60.Lh 

References

  1. 1.
    T.M. Taczak, D.K. Killinger, Appl. Opt. 37, 8460 (1998) CrossRefADSGoogle Scholar
  2. 2.
    K. Scholle, E. Heumann, G. Huber, Laser Phys. Lett. 1, 285 (2004) CrossRefGoogle Scholar
  3. 3.
    I.A. Shcherbakov, I.V. Klimov, V.B. Tsvetkov, A.I. Nerobeev, L.B. Sadovnikova, V.I. Eliseenko, in Proc. SPIE, vol. 2128, (1994), pp. 238–242 Google Scholar
  4. 4.
    D. Theisen, V. Ott, H.W. Bernd, V. Danicke, R. Keller, R. Brinkmann, in Proc. SPIE, vol. 5142, (2003), pp. 96–100 Google Scholar
  5. 5.
    P.A. Budni, L.A. Pomeranz, M.L. Lemons, C.A. Miller, J.R. Mosto, E.P. Chicklis, J. Opt. Soc. Am. B 17, 723 (2000) CrossRefADSGoogle Scholar
  6. 6.
    G.J. Kintz, R. Allen, L. Esterowitz, Laser and Electro Optics. OSA Tech. Dig. Ser., vol. 14 (1987), p. 226 Google Scholar
  7. 7.
    S.A. Payne, L.L. Chase, L.K. Smith, W.L. Kway, W.F. Krupke, IEEE J. Quantum Electron. 28, 2619 (1992) CrossRefADSGoogle Scholar
  8. 8.
    R.C. Stoneman, L. Esterowitz, Opt. Lett. 17, 736 (1992) CrossRefADSGoogle Scholar
  9. 9.
    A. Abdolvand, D.Y. Shen, L.J. Cooper, R.B. Williams, W.A. Clarkson, Ultra-efficient Ho:YAG laser end-pumped by a cladding-pumped Tm-doped silica fiber laser, in OSA Trends in Optics and Photonics, ed. by J.J. Zayhowski. Advanced Solid-State Photonics, vol. 83 (Optical Society of America, Washington, 2003), pp. 7–12 Google Scholar
  10. 10.
    T.Y. Fan, G. Huber, R.L. Bayer, P. Mitzscherlich, IEEE J. Quantum. Electron. 24, 924 (1988) CrossRefADSGoogle Scholar
  11. 11.
    C.J. Lee, G. Han, N.P. Barnes, IEEE J. Quantum. Electron. 32, 104 (1996) CrossRefADSGoogle Scholar
  12. 12.
    V. Sudesh, K. Asai, J. Opt. Soc. B 20, 1829 (2003) CrossRefADSGoogle Scholar
  13. 13.
    F. Cornacchia, E. Sani, A. Toncelli, M. Tonelli, M. Marano, S. Taccheo, G. Galzerano, P. Laporta, Appl. Phys. B 75, 817 (2002) CrossRefADSGoogle Scholar
  14. 14.
    E. Sani, A. Toncelli, M. Tonelli, N. Coluccelli, G. Galzerano, P. Laporta, Appl. Phys. B 81, 847 (2005) CrossRefADSGoogle Scholar
  15. 15.
    P.J. Morris, W. Lüthy, H.P. Weber, Yu.D. Zavartsev, P.A. Studenikin, I. Shcherbakov, A.I. Zagumenyi, Opt. Commun. 111, 493 (1994) CrossRefADSGoogle Scholar
  16. 16.
    A. Sato, K. Asai, K. Mizutani, Opt. Lett. 29, 836 (2004) CrossRefADSGoogle Scholar
  17. 17.
    Y. Urata, H. Machida, M. Higuchi, K. Kodaira, S. Wada, Tm,Ho:GdVO4 laser at room temperature, in OSA Trends in Optics and Photonics (TOPS). Advanced Solid-State Photonics, Proceedings Volume, vol. 98 (Optical Society of America, Washington, 2005), pp. 196–201 Google Scholar
  18. 18.
    A.A. Lagatsky, N.V. Kuleshov, V.P. Mikhailov, Opt. Commun. 165, 71 (1999) CrossRefADSGoogle Scholar
  19. 19.
    S.N. Bagaev, S.M. Vatnik, A.P. Maiorov, A.A. Pavlyuk, D.V. Plakushchev, Quantum Electron. 30, 310 (2000) CrossRefGoogle Scholar
  20. 20.
    V. Petrov, F. Güell, J. Massons, J. Gavalda, R.M. Sole, M. Aguiló, F. Diaz, U. Griebner, IEEE J. Quantum Electron. 40, 1244 (2004) CrossRefADSGoogle Scholar
  21. 21.
    X. Mateos, V. Petrov, J. Liu, M.C. Pujol, U. Griebner, M. Aguiló, F. Diaz, M. Galan, G. Viera, IEEE J. Quantum Electron. 42, 1008 (2006) CrossRefADSGoogle Scholar
  22. 22.
    A.E. Troshin, V.E. Kisel, A.S. Yasukevich, N.V. Kuleshov, A.A. Pavlyuk, E.B. Dunina, A.A. Kornienko, Appl. Phys. B 86, 287 (2007) CrossRefADSGoogle Scholar
  23. 23.
    A.A. Kaminskii, A.A. Pavlyuk, P.V. Klevtsov, I.F. Balashov, V.A. Berenberg, S.A. Sarkisov, V.A. Fedorov, M.V. Petrov, V.V. Lyubchenko, Izv. Akad. Nauk SSSR, Neorg. Mat. 13, 582 (1977) Google Scholar
  24. 24.
    M.C. Pujol, J. Massons, M. Aguilo, F. Dias, M. Rico, C. Zaldo, IEEE J. Quantum Electron. 38, 93 (2002) CrossRefADSGoogle Scholar
  25. 25.
    P.V. Klevtsov, L.P. Kozeeva, R.F. Klevtsova, Izv. Akad. Nauk. Neorg. Mat. 4, 1147 (1968) Google Scholar
  26. 26.
    A.A. Pavlyuk, Ya.V. Vasiliev, L.Yu. Kharchenko, F.A. Kuznetsov, in Proceedings of the APSAM-92, Shanghai, China, 26–29 April 1992 (Published in Japan, 1993), pp. 164–171 Google Scholar
  27. 27.
    A.S. Yasukevich, V.G. Shcherbitsky, V.E. Kisel, A.V. Mandrik, N.V. Kuleshov, Modified reciprocity method in laser crystals spectroscopy, in Advanced Solid-State Photonics 2004 Top. Meet., OSA Tech. Dig., paper WB8 Google Scholar
  28. 28.
    B.M. Walsh, N.P. Barnes, B. Di Bartolo, J. Lumin. 75, 89 (1997) CrossRefGoogle Scholar
  29. 29.
    B.M. Walsh, N.P. Barnes, B. Di Bartolo, J. Lumin. 90, 39 (2000) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • A. A. Lagatsky
    • 1
  • F. Fusari
    • 1
  • S. V. Kurilchik
    • 2
  • V. E. Kisel
    • 2
  • A. S. Yasukevich
    • 2
  • N. V. Kuleshov
    • 2
  • A. A. Pavlyuk
    • 3
  • C. T. A. Brown
    • 1
  • W. Sibbett
    • 1
  1. 1.School of Physics and AstronomyUniversity of St. AndrewsSt. AndrewsUK
  2. 2.Institute for Optical Materials and TechnologiesBelarus National Technical UniversityMinskBelarus
  3. 3.Institute of Inorganic ChemistrySiberian Branch of Russian Academy of SciencesNovosibirskRussia

Personalised recommendations