Applied Physics B

, 97:753 | Cite as

A scalable quantum computer with ultranarrow optical transition of ultracold neutral atoms in an optical lattice

  • K. Shibata
  • S. Kato
  • A. Yamaguchi
  • S. Uetake
  • Y. Takahashi
Article

Abstract

We propose a new quantum-computing scheme using ultracold neutral ytterbium atoms in an optical lattice, especially in a monolayer of three-dimensional optical lattice. The nuclear Zeeman sublevels define a qubit. This choice avoids the natural phase evolution due to the magnetic dipole interaction between qubits. The Zeeman sublevels with large magnetic moments in the long-lived metastable state are also exploited to address individual atoms and to construct a controlled-multiqubit gate. Estimated parameters required for this scheme show that this proposal is scalable and experimentally feasible.

PACS

03.67.Lx 37.10.Jk 

References

  1. 1.
    See, for example, Quantum Information Science and Technology Roadmap, available from http://qist.lanl.gov
  2. 2.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000) MATHGoogle Scholar
  3. 3.
    D.P. DiVincenzo, Fortschr. Phys. 85, 25 (2000) Google Scholar
  4. 4.
    L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, R. Cleve, I. Chuang, Phys. Rev. Lett. 85, 25 (2000) CrossRefGoogle Scholar
  5. 5.
    H. Häffner, W. Hänsel, C.F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Körber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Nature 438, 643 (2005) CrossRefADSGoogle Scholar
  6. 6.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002) CrossRefADSGoogle Scholar
  7. 7.
    O. Mandel, M. Greiner, A. Widera, T. Rom, T.W. Hänsch, I. Bloch, Nature 425, 30 (2003) CrossRefGoogle Scholar
  8. 8.
    D. Schrader, I. Dotsenko, M. Khudaverdyan, Y. Miroshnychenko, A. Rauschenbeutel, D. Meschede, e-print quant-ph/0409037
  9. 9.
    P.J. Lee, M. Anderlini, B.L. Brown, J. Sebby-Strabley, W.D. Phillips, J.V. Porto, Phys. Rev. Lett. 99, 020402 (2007) CrossRefADSGoogle Scholar
  10. 10.
    S. Trotzky, P. Cheinet, S. Flling, M. Feld, U. Schnorrberger, A.M. Rey, A. Polkovnikov, E.A. Demler, M.D. Lukin, I. Bloch, Science 319, 295 (2008) CrossRefADSGoogle Scholar
  11. 11.
    J. Vala, A.V. Thapliyal, S. Myrgren, U. Vazirani, D.S. Weiss, K.B. Whaley, Phys. Rev. A 71, 032324 (2005) CrossRefADSGoogle Scholar
  12. 12.
    The dipole blockade effect has been recently observed; E. Urban, T.A. Johnson, T. Henage, L. Isenhower, D.D. Yvuz, T.G. Walker, M. Saffman, Nat. Phys. 5, 110 (2009) CrossRefGoogle Scholar
  13. 13.
    A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, P. Grangier, Nat. Phys. 5, 115 (2009) CrossRefGoogle Scholar
  14. 14.
    D.G. Cory, A.F. Fahmy, T.F. Havel, Proc. Natl. Acad. Sci. USA 94, 1634 (1997) CrossRefADSGoogle Scholar
  15. 15.
    D. DeMille, Phys. Rev. Lett. 88, 067901 (2002) CrossRefADSGoogle Scholar
  16. 16.
    A. Derevianko, C.C. Canon, Phys. Rev. A 70, 062319 (2004) CrossRefADSGoogle Scholar
  17. 17.
    S. Fölling, A. Widera, T. Müller, F. Gerbier, I. Bloch, Phys. Rev. Lett. 97, 060403 (2006) CrossRefGoogle Scholar
  18. 18.
    K. Shibata, S. Kato, A. Yamaguchi, S. Uetake, Y. Takahashi, 15th Symposium on Quantum Information Technology (2006, unpublished). The uses of nuclear spin of alkaline-earth-metal-like atoms are also proposed recently [19–22] Google Scholar
  19. 19.
    D. Hayes, P.S. Julienne, I.H. Deutsch, Phys. Rev. Lett. 98, 070501 (2007) CrossRefADSGoogle Scholar
  20. 20.
    I. Reichenbach, I.H. Deutsch, Phys. Rev. Lett. 99, 123001 (2007) CrossRefADSGoogle Scholar
  21. 21.
    A.J. Daley, M.M. Boyd, J. Ye, P. Zoller, Phys. Rev. Lett. 101, 170504 (2008) CrossRefADSGoogle Scholar
  22. 22.
    A.V. Gorshkov, A.M. Rey, A.J. Daley, M.M. Boyd, J. Ye, P. Zoller, M.D. Lukin, Phys. Rev. Lett. 102, 110503 (2009) CrossRefADSGoogle Scholar
  23. 23.
    D.W. Leung, I.L. Chuang, F. Yamaguchi, Y. Yamamoto, Phys. Rev. A 52, 3457 (1995) CrossRefGoogle Scholar
  24. 24.
    J. Vala, A.V. Thapliyal, S. Myrgren, U. Vazirani, D.S. Weiss, K.B. Whaley, Phys. Rev. A 71, 032324 (2005) CrossRefADSGoogle Scholar
  25. 25.
    M. Köhl, H. Moritz, T. Stöferle, K. Günter, T. Esslinger, Phys. Rev. Lett. 94, 080403 (2005) CrossRefGoogle Scholar
  26. 26.
    A Mott-insulator state for bosonic 174Yb atoms was recently realized; T. Fukuhara, S. Sugawa, M. Sugimoto, S. Taie, Y. Takahashi, Phys. Rev. A 79(R) (2009) Google Scholar
  27. 27.
    S.G. Porsev, A. Derevianko, Phys. Rev. A 69, 042506 (2004) CrossRefADSGoogle Scholar
  28. 28.
    S.G. Porsev, G. Rakhlina, M.G. Kozlov, Phys. Rev. A 60, 4 (1999) CrossRefGoogle Scholar
  29. 29.
    B.W. Shore, Phys. Rev. A 24, 3 (1981) CrossRefMathSciNetGoogle Scholar
  30. 30.
    A. Yamaguchi, S. Uetake, Y. Takahashi, Appl. Phys. B 91, 57 (2008) CrossRefADSGoogle Scholar
  31. 31.
    D.G. Grier, Nature 424, 21 (2003) CrossRefADSGoogle Scholar
  32. 32.
    M.A. Nielsen, Phys. Rev. Lett. 93, 040503 (2004) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • K. Shibata
    • 1
  • S. Kato
    • 1
  • A. Yamaguchi
    • 1
  • S. Uetake
    • 1
    • 2
  • Y. Takahashi
    • 1
    • 2
  1. 1.Department of Physics, Graduate School of ScienceKyoto UniversityKyotoJapan
  2. 2.CRESTJapan Science and Technology AgencySaitamaJapan

Personalised recommendations