Applied Physics B

, 97:859 | Cite as

Microfluidic sorting system based on optical force switching

  • S.-K. Hoi
  • C. Udalagama
  • C.-H. Sow
  • F. Watt
  • A. A. Bettiol
Article

Abstract

We report a versatile, and automatic method for sorting cells and particles in a three dimensional polydimethylsiloxane (PDMS) structure consisting of two cross-microchannels. As microspheres or yeast cells are fed continuously into a lower channel, a line shaped focused laser beam is applied (perpendicular to the direction of flow) at the crossing junction of the two channels. The scattering force of the laser beam was employed to push microparticles matching specific criteria upwards from one channel to another. The force depends on the intrinsic properties of the particles such as their refractive index and size, as well as the laser power and the fluid flow speed. The combination of these parameters gives a tunable selection criterion for the effective and efficient sorting of the particles. The introduction of the cylindrical lens into the optical train allows for simultaneous manipulation of multiple particles which has significantly increased the efficiency and throughput of the sorting. A high aspect ratio microchannel (A.R.=1.6) was found to enhance the sorting performance of the device. By careful control of the microparticle flow rate, near 100% sorting efficiency was achieved.

PACS

87.80.Cc 47.15.-x 47.57.J- 

References

  1. 1.
    S. Haeberle, R. Zengerle, Lab Chip 7, 1094–1110 (2007) CrossRefGoogle Scholar
  2. 2.
    H.C. Hunt, J.S. Wilkinson, Microfluid Nanofluid 4, 53–79 (2008) CrossRefGoogle Scholar
  3. 3.
    L. Wang, L.A. Flanagan, N.L. Jeon, E. Monuki, A.P. Lee, Lab Chip 7, 1114–1120 (2007) CrossRefGoogle Scholar
  4. 4.
    M.P. MacDonald, G.C. Spalding, K. Dholakia, Nature 426, 421–424 (2003) CrossRefADSGoogle Scholar
  5. 5.
    K. Ladavac, K. Kasza, D.G. Grier, Phys. Rev. E 70, 010901 (2004) CrossRefADSGoogle Scholar
  6. 6.
    A.M. Lacasta, J.M. Sancho, A.H. Romero, K. Lindenberg, Phys. Rev. Lett. 94, 160601 (2005) CrossRefADSGoogle Scholar
  7. 7.
    R.L. Smith, G.C. Spalding, K. Dholakia, M. MacDonald, J. Opt. A, Pure Appl. Opt. 9, 134–138 (2007) CrossRefADSGoogle Scholar
  8. 8.
    G. Milne, D. Rhodes, M. MacDonald, K. Dholakia, Opt. Lett. 32, 1144–1146 (2007) CrossRefADSGoogle Scholar
  9. 9.
    S.J. Hart, A.V. Terray, J. Arnold, T.A. Leski, Opt. Express 15(5), 2724–2731 (2007) CrossRefADSGoogle Scholar
  10. 10.
    S.J. Hart, A.V. Terray, J. Arnold, Appl. Phys. Lett. 91, 171121 (2007) CrossRefADSGoogle Scholar
  11. 11.
    M.M. Wang, E. Tu, D.E. Raymond, J.M. Yang, H. Zhang, N. Hagen, B. Dees, E.M. Mercer, A.H. Forster, I. Kariv, P.J. Marchand, W.F. Butler, Nat. Biotech. 23, 83 (2005) CrossRefGoogle Scholar
  12. 12.
    R.F. Marchington, M. Mazilu, S. Kuriakose, V.G. Chavez, P.J. Reece, T.F. Krauss, M. Gu, K. Dholakia, Opt. Express 16(6), 3712–3726 (2008) CrossRefADSGoogle Scholar
  13. 13.
    R. Applegate Jr., J. Squier, T. Vestad, J. Oakey, D. Marr, Opt. Express 12, 4390–4398 (2004) CrossRefADSGoogle Scholar
  14. 14.
    R.W. Applegate, J. Squier, T. Vestad, J. Oakey, D.W.M. Marr, P. Bado, M.A. Dugan, A.A. Said, Lab Chip 6, 422–426 (2006) CrossRefGoogle Scholar
  15. 15.
    J. Oakey, J. Allely, D.W.M. Marr, Biotechnol. Prog. 18, 1439–1442 (2002) CrossRefGoogle Scholar
  16. 16.
    J. Enger, M. Goksor, K. Ramser, P. Hagberg, D. Hanstorp, Lab Chip 4, 196–200 (2004) CrossRefGoogle Scholar
  17. 17.
    C.C. Lin, A. Chen, C.H. Lin, Biomed. Microdevices 10, 55–63 (2008) CrossRefGoogle Scholar
  18. 18.
    S.C. Chapin, V. Germain, E.R. Dufresne, Opt. Express 14(26), 13095 (2006) CrossRefADSGoogle Scholar
  19. 19.
    Y.Y. Sun, X.C. Yuan, L.S. Ong, J. Bu, S.W. Zhu, R. Liu, Appl. Phys. Lett. 90, 031107 (2007) CrossRefADSGoogle Scholar
  20. 20.
    F.C. Cheong, C.H. Sow, A.T.S. Wee, P. Shao, A.A. Bettiol, J.A. Van Kan, F. Watt, Appl. Phys. B (Lasers Opt.) 83(1), 121–125 (2006) CrossRefADSGoogle Scholar
  21. 21.
    K. Grujic, O.G. Helleso, J.P. Hole, J.S. Wilkinson, Opt. Express 13, 1–7 (2005) CrossRefADSGoogle Scholar
  22. 22.
    I. Ricardez-Vargas, P. Rodriguez-Montero, R. Ramos-Garcia, K. Volke-Sepulveda, Appl. Phys. Lett. 88, 121116 (2006) CrossRefADSGoogle Scholar
  23. 23.
    J.A. van Kan, L.P. Wang, P.G. Shao, A.A. Bettiol, F. Watt, Nucl. Instrum. Methods Phys. Res. B 260, 353–356 (2007) CrossRefADSGoogle Scholar
  24. 24.
    R.F. Ismagilov, D. Rosmarin, P.J.A. Kenis, D.T. Chiu, W. Zhang, H.A. Stone, G.M. Whitesides, Anal. Chem. 73, 4682–4687 (2001) CrossRefGoogle Scholar
  25. 25.
    A.H. Latham, A.N. Tarpara, M.E. Williams, Anal. Chem. 79, 5746–5752 (2007) CrossRefGoogle Scholar
  26. 26.
    A. Ashkin, Appl. Phys. Lett. 19, 283–285 (1971) CrossRefADSGoogle Scholar
  27. 27.
    A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288–290 (1986) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • S.-K. Hoi
    • 1
  • C. Udalagama
    • 1
  • C.-H. Sow
    • 1
  • F. Watt
    • 1
  • A. A. Bettiol
    • 1
  1. 1.Department of PhysicsNational University of SingaporeSingaporeSingapore

Personalised recommendations