Applied Physics B

, 98:149 | Cite as

Influence of MgO codoping on the optical properties of Er3+-doped near-stoichiometric LiNbO3

  • A.-H. Li
  • Z.-R. Zheng
  • T.-Q. Lü
  • L. Sun
  • W.-L. Liu
  • W.-Z. Wu
Article

Abstract

Four near-stoichiometric lithium niobate (NSLN) crystals codoped with Er3+ (1 mol%) and MgO (0, 0.5, 1.0, and 2.0 mol%) were grown from K2O-based flux in air using top seeded solution growth technique. The [Li]/[Nb] ratio, estimated from the blueshift of ultraviolet absorption edge, is 97.2% in NSLN:Er. MgO; codoping can increase the segregation coefficient of Er3+ in NSLN:Er:MgO crystal. The photorefractive damage threshold is enhanced by three orders of magnitude for NSLN:Er codoped with 1 mol% MgO, it coincides with the peak shift of OH absorption spectrum from 3481 to 3535 cm−1. Judd–Ofelt theory based on absorption spectra is used to analyze the influence of MgO concentration on the Judd–Ofelt intensity parameter, transition strength, fluorescence branching ratio, and stimulated emission cross section. From the time-resolved emission spectra and the comparison among emission spectra, two Er3+ crystal-field sites are ascertained in NSLN:Er codoped with 2 mol% MgO, this coincides with the bimodal structure in X-ray photoelectron spectrometry spectra. The upconversion processes under pulse excitation is proposed based on the pump energy dependence and decay kinetics. The distribution of Er3+-clustered sites in NSLN:Er:MgO series is discussed based on the nonexponential decay curves monitored at 550 nm under two-photon excitation.

PACS

31.72.-y 81.40.Tv 42.65.Ky 42.62.Fi 

References

  1. 1.
    D. Janner, D. Tulli, M. García-Granda, M. Belmonte, V. Pruneri, Laser Photonics. Rev. 3, 301 (2009) CrossRefGoogle Scholar
  2. 2.
    D.G. Lim, B.S. Jang, S.I. Moon, C.Y. Won, J. Yi, Solid State Electron. 45, 1159 (2001) CrossRefADSGoogle Scholar
  3. 3.
    S.K.R.S. Sankaranarayanan, V.R. Bhethanabotla, IEEE Sens. J. 9, 329 (2009) CrossRefGoogle Scholar
  4. 4.
    J.Q. Sun, H. Li, Y.S. Cheng, J.L. Li, Opt. Commun. 281, 5874 (2008) CrossRefADSGoogle Scholar
  5. 5.
    I. Baumann, S. Bosso, R. Brinkmann, R. Corsini, M. Dinand, A. Greiner, K. Schäfer, J. Söchtig, W. Sohler, H. Suche, R. Wessel, IEEE J. Sel. Top. Quantum Electron. 2, 355 (1996) CrossRefGoogle Scholar
  6. 6.
    Y.L. Chen, J. Guo, C.B. Lou, J.W. Yuan, W.L. Zhang, S.L. Chen, Z.H. Hung, G.Y. Zhang, J. Cryst. Growth 263, 427 (2004) CrossRefADSGoogle Scholar
  7. 7.
    T.R. Volk, N.M. Rubinina, Opt. Lett. 15, 996 (1990) CrossRefADSGoogle Scholar
  8. 8.
    T.R. Volk, N.M. Rubinina, Ferroelect. Lett. Sect. 14, 37 (1992) CrossRefGoogle Scholar
  9. 9.
    J.K. Yamamoto, N.K.K. Iyi, S. Kimura, Appl. Phys. Lett. 61, 2156 (1992) CrossRefADSGoogle Scholar
  10. 10.
    E.P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, J.B. Gruber, Appl. Phys. Lett. 84, 1880 (2004) CrossRefADSGoogle Scholar
  11. 11.
    L.F. Johnson, A.A. Ballman, J. Appl. Phys. 40, 297 (1969) CrossRefADSGoogle Scholar
  12. 12.
    E. Montoya, J. Capmany, L.E. Bausá, T. Kellner, A. Diening, G. Huber, Appl. Phys. Lett. 74, 3113 (1999) CrossRefADSGoogle Scholar
  13. 13.
    M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, K. Kitamura, Jpn. J. Appl. Phys. 41, L49 (2002) CrossRefADSGoogle Scholar
  14. 14.
    Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, N. Suda, Appl. Phys. Lett. 77, 2494 (2000) CrossRefADSGoogle Scholar
  15. 15.
    D. Xue, K. Betzler, Appl. Phys. B 72, 641 (2001) ADSGoogle Scholar
  16. 16.
    B.R. Judd, Phys. Rev. 127, 750 (1962) CrossRefADSGoogle Scholar
  17. 17.
    G.S. Ofelt, J. Chem. Phys. 37, 511 (1962) CrossRefADSGoogle Scholar
  18. 18.
    J. Amin, B. Dussardier, T. Schweizer, M. Hempstead, J. Lumin. 69, 17 (1996) CrossRefGoogle Scholar
  19. 19.
    J.J. Ju, M.H. Lee, M. Cha, H.J. Seo, J. Opt. Soc. Am. B 20, 1990 (2003) CrossRefADSGoogle Scholar
  20. 20.
    A.H. Li, L. Sun, Z.R. Zheng, W.Z. Wu, W.L. Liu, Y.Q. Yang, T.Q. Lü, W.H. Su, J. Lumin. 128, 239 (2008) CrossRefGoogle Scholar
  21. 21.
    A.H. Li, Z.R. Zheng, L. Sun, Q. Lü, W.L. Liu, W.Z. Wu, Y.Q. Yang, T.Q. Lü, J. Appl. Phys. 104, 033511 (2008) CrossRefADSGoogle Scholar
  22. 22.
    S. Solanki, T.C. Chong, X.W. Xu, J. Cryst. Growth 250, 134 (2003) CrossRefADSGoogle Scholar
  23. 23.
    G. Dravecz, Á. Péter, K. Polgár, L. Kovács, J. Cryst. Growth 286, 334 (2006) CrossRefADSGoogle Scholar
  24. 24.
    L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, M. Wöhlecke, Appl. Phys. Lett. 70, 2801 (1997) CrossRefADSGoogle Scholar
  25. 25.
    K. Niwa, Y. Furukawa, S. Takekawa, K. Kitamura, J. Cryst. Growth 208, 493 (2000) CrossRefADSGoogle Scholar
  26. 26.
    C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, 1979) Google Scholar
  27. 27.
    K.G. Belabaev, A.A. Kaminskii, S.E. Sarkisov, Phys. Status Solidi (a) 28, K17 (1975) CrossRefGoogle Scholar
  28. 28.
    J.N.B. Reddy, K.G. Kamath, S. Vanishri, H.L. Bhat, S. Elizabeth, J. Chem. Phys. 128, 244709 (2008) CrossRefADSGoogle Scholar
  29. 29.
    Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, N. Suda, Appl. Phys. Lett. 77, 2494 (2000) CrossRefADSGoogle Scholar
  30. 30.
    Y.F. Kong, W.L. Zhang, X.J. Chen, J.J. Xu, G.Y. Zhang, J. Phys., Condens. Matter 11, 2139 (1999) CrossRefADSGoogle Scholar
  31. 31.
    D.L. Zhang, D.C. Wang, E.Y.B. Pun, J. Appl. Phys. 97, 103524 (2005) CrossRefADSGoogle Scholar
  32. 32.
    S.M. Lee, T.I. Shin, Y.T. Kim, M. Habu, T. Ito, M. Natori, D.H. Yoon, Mater. Sci. Eng. B 105, 34 (2003) CrossRefGoogle Scholar
  33. 33.
    D.A. Bryan, R. Gerson, H.E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984) CrossRefADSGoogle Scholar
  34. 34.
    Y. Zhang, Y.H. Xu, M.H. Li, Y.Q. Zhao, J. Cryst. Growth 233, 537 (2001) CrossRefADSGoogle Scholar
  35. 35.
    D.L. Zhang, Y.H.H.P.R. Xu, E.Y.B. Pun, J. Appl. Phys. 101, 053523 (2007) CrossRefADSGoogle Scholar
  36. 36.
    A. Li, L. Sun, Z. Zheng, Q. Lü, W. Wu, W. Liu, Y. Yang, T. Lü Appl. Phys. B 90, 29 (2008) CrossRefADSGoogle Scholar
  37. 37.
    L. Núñez, G. Lifante, F. Cussó, Appl. Phys. B 62, 485 (1996) CrossRefADSGoogle Scholar
  38. 38.
    R. Burlot, R. Moncorgé, G. Boulon, J. Lumin. 7274, 135 (1997) CrossRefGoogle Scholar
  39. 39.
    D.E. McCumber, Phys. Rev. 136, A954 (1964) CrossRefADSGoogle Scholar
  40. 40.
    H. Stange, K. Petermann, G. Huber, E.W. Duczynski, Appl. Phys. B 49, 269 (1989) CrossRefADSGoogle Scholar
  41. 41.
    O.M. Efimov, K. Gabel, L.B. Glebov, S. Grantham, M. Richardson, M.J. Soileau, J. Opt. Soc. Am. B 15, 193 (1998) CrossRefADSGoogle Scholar
  42. 42.
    M. Ajroud, M. Haouari, H.B. Ouada, H. Maaref, A. Brenier, C. Garapon, J. Phys., Condens. Matter 12, 3181 (2000) CrossRefADSGoogle Scholar
  43. 43.
    T. Hayakawa, M. Hayakawa, M. Nogami, J. Alloys Compd. 451, 77 (2008) CrossRefGoogle Scholar
  44. 44.
    J. Breguet, A.F. Umyskov, S.G. Semenkov, W. Lüthy, H.P. Weber, I.A. Shcherbakov, IEEE J. Quantum Electron. 28, 2563 (1992) CrossRefADSGoogle Scholar
  45. 45.
    J.W. Stouwdam, G.A. Hebbink, J. Huskens, F.C.J.M. van Veggel, Chem. Mater. 15, 4604 (2003) CrossRefGoogle Scholar
  46. 46.
    F. Pandozzi, F. Vetrone, J. Boyer, R. Naccache, J.A. Capobianco, A. Speghini, M. Bettinelli, J. Phys. Chem. B 109, 17400 (2005) CrossRefGoogle Scholar
  47. 47.
    A.H. Li, Q. Lü, Z.R. Zheng, L. Sun, W.Z. Wu, W.L. Liu, H.Z. Chen, Y.Q. Yang, T.Q. Lü, Opt. Lett. 33, 693 (2008) CrossRefADSGoogle Scholar
  48. 48.
    X.X. Luo, W.H. Cao, Sci. China Ser. B 50, 505 (2007) CrossRefGoogle Scholar
  49. 49.
    A.J. Garcia-Adeva, R. Balda, J. Fernández, E.E. Nyein, U. Hömmerich, Phys. Rev. B 72, 165116 (2005) CrossRefADSGoogle Scholar
  50. 50.
    J.B. Gruber, D.K. Sardar, R.M. Yow, B. Zandi, E.P. Kokanyan, Phys. Rev. B 69, 195103 (2004) CrossRefADSGoogle Scholar
  51. 51.
    T. Hayakawa, M. Hayakawa, M. Nogami, J. Ceram. Soc. Jpn. 116, 1092 (2008) CrossRefGoogle Scholar
  52. 52.
    J. Rubin, A. Brenier, R. Moncorge, C. Pedrini, J. Lumin. 36, 39 (1986) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • A.-H. Li
    • 1
  • Z.-R. Zheng
    • 1
  • T.-Q. Lü
    • 1
  • L. Sun
    • 2
  • W.-L. Liu
    • 1
  • W.-Z. Wu
    • 1
  1. 1.Center for Condensed Matter Science and Technology, Department of PhysicsHarbin Institute of TechnologyHarbinP.R. China
  2. 2.School of Material Science and EngineeringHarbin Institute of TechnologyHarbinP.R. China

Personalised recommendations