Applied Physics B

, Volume 98, Issue 2–3, pp 295–299 | Cite as

23W peak power picosecond pulses from a single-stage all-semiconductor master oscillator power amplifier

  • S. Riecke
  • S. Schwertfeger
  • K. Lauritsen
  • K. Paschke
  • R. Erdmann
  • G. Tränkle
Article

Abstract

Using a single-stage all-semiconductor master oscillator-power amplifier, we generate narrow-band laser pulses of 23 W peak power at 1063 nm wavelength. These pulses of 40 ps length FWHM have a variable repetition rate and pulse energies around 2 nJ, which exceeds previous realizations and makes them ideally suited for second harmonic generation. With a spectral filter, an extinction ratio above 36 dB could be achieved at nearly 10 W peak power. We use a novel spectral method to reliably determine pulse energies independently of the background level.

PACS

42.55.Px 42.60.Da 42.65.De 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.P. Agrawal, N.A. Olsson, Amplification and compression of weak picosecond optical pulses by using semiconductor-laser amplifiers. Opt. Lett. 14(10), 500 (1989) CrossRefADSGoogle Scholar
  2. 2.
    L.P. Barry, J. Debeau, R. Boittin, Simple technique to improve the spectral quality of gain-switched pulses from a DFB laser. Electron. Lett. 30(25), 2143 (1994) CrossRefGoogle Scholar
  3. 3.
    S.D. Cho, C.H. Lee, S.Y. Shin, Limit of optical pulsewidth in the gain-switched DFB semiconductor laser. IEEE Photonics Technol. Lett. 11(7), 782 (1999) CrossRefADSGoogle Scholar
  4. 4.
    H. Ghafouri-Shiraz, P.W. Tan, T. Aruga, Picosecond pulse amplification in tapered-waveguide laser-diode amplifiers. IEEE J. Sel. Top. Quantum Electron. 3(2), 210 (1997) CrossRefGoogle Scholar
  5. 5.
    P.B. Hansen, J.M. Wiesenfeld, G. Eisenstein, R.S. Tucker et al., Repetition-rate dependence of gain compression in InGaAsP optical amplifiers using picosecond optical pulses. IEEE J. Quantum Electron. 25(12), 2611 (1989) CrossRefADSGoogle Scholar
  6. 6.
    R. Häring, T. Schmitt, A.R. Bellancourt, F. Lison et al., 10 W peak power from a gain-switched picosecond all-semiconductor laser. Proc. SPIE 5707, 302 (2005) CrossRefADSGoogle Scholar
  7. 7.
    A. Kamite, H. Ishikawa, H. Imai, Single-longitudinal-mode operation of DFB-lasers in gain-switched operating conditions. Electron. Lett. 24, 933 (1988) CrossRefADSGoogle Scholar
  8. 8.
    H. Kogelnik, C.V. Shank, Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 43(5), 2327 (1972) CrossRefADSGoogle Scholar
  9. 9.
    M. Kress, T. Meier, R. Steiner, F. Dolp et al., Time-resolved microspectrofluometry and fluorescence lifetime imaging of photosensitizers using picosecond pulsed diode lasers in laser scanning microscopes. J. Biomed. Opt. 8(1), 26 (2003) CrossRefADSGoogle Scholar
  10. 10.
    M. Kuramoto, N. Kitajima, H. Guo, Y. Furushima et al., Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source. Opt. Lett. 32(18), 2726 (2007) CrossRefADSGoogle Scholar
  11. 11.
    T. Miyoshi, S. Masuii, S. Okada, T. Yanamoto et al., 510–515 nm ingan-based green laser diodes on c-plane GaN substrate. Appl. Phys. Express 2(6), 062201 (2009) CrossRefADSGoogle Scholar
  12. 12.
    M. Poelker, High power gain-switched diode laser master oscillator and amplifier. Appl. Phys. Lett. 67(19), 2762 (1995) CrossRefADSGoogle Scholar
  13. 13.
    S.M. Riecke, K. Lauritsen, H. Thiem, K. Paschke et al., Comparison of a Yb-doped fiber and a semiconductor taber for amplification of picosecond laser pulses. Proc. SPIE 7212, 721200 (2009) Google Scholar
  14. 14.
    S. Rüttinger, R. Macdonald, B. Krämer, F. Koberling et al., Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy. J. Biomed. Opt. 11(2), 024012 (2006) CrossRefGoogle Scholar
  15. 15.
    W. Susaki, S. Ukawa, M. Tanaka, Carrier lifetime in compressively strained InGaAs quantum well lasers with InGaAsP barrier/waveguide layers grown on GaAs. Phys. Status Solidi C 3(3), 683 (2006) CrossRefADSGoogle Scholar
  16. 16.
    G. Talli, M.J. Adams, Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments. Opt. Commun. 218, 161 (2003) CrossRefADSGoogle Scholar
  17. 17.
    J.M. Tang, K.A. Shore, Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency. IEEE J. Quantum Electron. 34(7), 1263 (1998) CrossRefADSGoogle Scholar
  18. 18.
    A. Uskov, J. Mørk, J. Mark, Theory of short-pulse gain saturation in semiconductor laser amplifiers. IEEE Photonics Technol. Lett. 4(5), 443 (1992) CrossRefADSGoogle Scholar
  19. 19.
    M. Wahl, F. Koberling, M. Patting, H. Rahn et al., Time-resolved confocal fluorescence imaging and spectroscopy system with single molecule sensitivity and sub-micrometer resolution. Curr. Pharm. Biotechnol. 5, 299 (2004) CrossRefGoogle Scholar
  20. 20.
    J.N. Walpole, Semiconductor amplifiers and lasers with tapered gain regions. Opt. Quantum Electron. 28(6), 623 (1996) CrossRefMathSciNetGoogle Scholar
  21. 21.
    D. Woll, J. Schumacher, A. Robertson, M.A. Tremont et al., 250 mW of coherent blue 460-nm light generated by single-pass frequency doubling of the output of a mode-locked high-power diode laser in periodically poled KTP. Opt. Lett. 27(12), 1055 (2002) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • S. Riecke
    • 1
  • S. Schwertfeger
    • 2
  • K. Lauritsen
    • 1
  • K. Paschke
    • 2
  • R. Erdmann
    • 1
  • G. Tränkle
    • 2
  1. 1.PicoQuant GmbHBerlinGermany
  2. 2.Ferdinand-Braun-InstituteBerlinGermany

Personalised recommendations