Applied Physics B

, 97:263 | Cite as

High power laser operation with crystal fibers

  • D. Sangla
  • I. Martial
  • N. Aubry
  • J. Didierjean
  • D. Perrodin
  • F. Balembois
  • K. Lebbou
  • A. Brenier
  • P. Georges
  • O. Tillement
  • J.-M. Fourmigué
Article

Abstract

We present the very last results on the development of high-power lasers with crystal fibers in Nd:YAG and in Yb:YAG grown by the Micro-Pulling Down technique. An overview of the main optical properties of the grown crystal fibers is given as well as the principles of the diode-pumped systems are developed. The average output power obtained with those materials reaches now several tens of watts in the CW regime and in high repetition rate Q-switched operation. Pulses with an energy of several millijoules have been obtained with pulse durations from 10 to 20 ns and peak powers from 100 kW to 350 kW. In each case, the measured M2 quality factors remained in the range 2.5 to 5. In addition, the first demonstration of high-power laser emission with an Yb:YAG crystal fiber of 0.4 mm in diameter is reported. In this case, we obtained an output power of 27 W at 1030 nm under 100 W of pump power at 940 nm in CW regime. To our knowledge, those results represent the highest powers ever generated with crystal fibers obtained directly from the growth. We finally conclude this work by exposing the potential of crystal fiber lasers for a new generation of high-power laser systems.

PACS

42.55.Xi 42.60.By 42.70.Hj 81.05.-t 

References

  1. 1.
    S. Maryashin, A. Unt, V.P. Gapontsev, 10-mJ pulse energy and 200 W average power Yb-doped fiber laser, in Fiber Lasers III: Technology, Systems, and Applications (2006) Google Scholar
  2. 2.
    O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, A. Tünnermann, Millijoule pulse energy Q-switched short-length fiber laser. Opt. Lett. 32(11), 1551–1553 (2007) CrossRefADSGoogle Scholar
  3. 3.
    Y.-W. Lee, S. Sinha, M.J. Digonnet, R.L. Byer, S. Jiang, 10-watt, single-mode, single-frequency, 1.03 μm Yb3+-doped phosphate fiber amplifier, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, Washington, 2008) Google Scholar
  4. 4.
    A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, H. Opower, Scalable concept for diode-pumped high-power solid-state lasers. Appl. Phys. B Lasers Opt. 58(5), 365–372 (1994) ADSGoogle Scholar
  5. 5.
    T.J. Kane, R.C. Eckardt, R.L. Byer, Reduced thermal focusing and birefringence in zig-zag slab geometry crystalline lasers. IEEE J. Quantum Electron. 19(9), 1351–1354 (1983) CrossRefADSGoogle Scholar
  6. 6.
    D. Sauder, A. Minassian, M. Damzen, High efficiency laser operation of 2 at.% doped crystalline Nd:YAG in a bounce geometry. Opt. Express 14(3), 1079–1085 (2006) CrossRefADSGoogle Scholar
  7. 7.
    H. Bruesselbach, D.S. Sumida, A 2.65-kW Yb:YAG single-rod laser. IEEE J. Sel. Top. Quantum Electron. 11(3), 600–603 (2005) CrossRefGoogle Scholar
  8. 8.
    E.C. Honea, R.J. Beach, S.C. Mitchell, J.A. Skidmore, M.A. Emanuel, S.B. Sutton, S.A. Payne, P.V. Avizonis, R.S. Monroe, D.G. Harris, High-power dual-rod Yb:YAG laser. Opt. Lett. 25(11), 805–807 (2000) CrossRefADSGoogle Scholar
  9. 9.
    J. Stone, C.A. Burrus, Nd:Y2O3 single-crystal fiber laser: Room-temperature cw operation at 1.07- and 1.35-μm wavelength. J. Appl. Phys. 49(4), 2281–2287 (1978) CrossRefADSGoogle Scholar
  10. 10.
    M.J.F. Digonnet, C.J. Gaeta, H.J. Shaw, 1.064 μm and 1.32-μm Nd:YAG single-crystal fiber lasers. J. Lightwave Technol. 4(4), 454–460 (1986) CrossRefADSGoogle Scholar
  11. 11.
    R.S. Feigelson, Opportunities for research on single-crystal fibers. Mater. Sci. Eng. 8(1), 67–75 (1988) CrossRefGoogle Scholar
  12. 12.
    D.A. Nikolaev, S.Y. Rusanov, I.A. Shcherbakov, V.B. Tsvetkov, A.A. Yakovlev, Guided wave Nd:YAG single-crystal fiber lasers. Laser Phys. 9(1), 319–323 (1999) Google Scholar
  13. 13.
    M. Frede, R. Wilheim, M. Brendel, C. Fallnich, F. Seifert, B. Willke, K. Danzmann, High power fundamental mode Nd:YAG laser with efficient birefringence compensation. Opt. Express 12(15), 3581–3589 (2004) CrossRefADSGoogle Scholar
  14. 14.
    D. Kracht, D. Freiburg, R. Wilhelm, M. Frede, Core-doped ceramic Nd:YAG laser. Opt. Express 14(7), 2691–2694 (2006) CrossRefADSGoogle Scholar
  15. 15.
    K. Sueda, S. Kawato, T. Kobayashi, LD pumped Yb:YAG regenerative amplifier for high average power short-pulse generation. Laser Phys. Lett. 5(4), 271–275 (2008) CrossRefGoogle Scholar
  16. 16.
    A.S.S. de Camargo, L.A.O. Nunes, D.R. Ardila, J.P. Andreeta, Excited-state absorption and 1064-nm end-pumped laser emission of Nd:YVO4 single-crystal fiber grown by laser-heated pedestal growth. Opt. Lett. 29(1), 59–61 (2004) CrossRefADSGoogle Scholar
  17. 17.
    M. Matsukura, O. Nakamura, S. Watanabe, A. Miyamoto, Y. Furukawa, Y. Sato, T. Taira, T. Suzudo, H. Mifune, Core-clad-type composites of ND:GDVO4 single crystal grown by the double die EFG method, in Advanced Solid-State Photonics (Optical Society of America, Washington, 2007) Google Scholar
  18. 18.
    K. Lebbou, D. Perrodin, V.I. Chani, A. Brenier, O. Tillement, O. Aloui, J.M. Fourmigué, J. Didierjean, F. Balembois, P. Gorges, Fiber single-crystal growth from the melt for optical applications. J. Am. Ceram. Soc. 89(1), 75–80 (2006) CrossRefGoogle Scholar
  19. 19.
    J.C. Wyant, White light interferometry, in Conference on Holography (SPIE, Bellingham, 2002) Google Scholar
  20. 20.
    J. Didierjean, M. Castaing, F. Balembois, P. Georges, D. Perrodin, J.M. Fourmigué, K. Lebbou, A. Brenier, O. Tillement, High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique. Opt. Lett. 31(23), 3468–3471 (2006) CrossRefADSGoogle Scholar
  21. 21.
    D. Sangla, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, J.M. Fourmigué, Diode-pumped laser with Yb:YAG single-crystal fiber grown by the micro-pulling down technique. Appl. Phys. B Lasers Opt. 94(2), 203–207 (2009) CrossRefADSGoogle Scholar
  22. 22.
    A.E. Siegman, Lasers (University Science Books, Mill Valley, 1986) Google Scholar
  23. 23.
    C.-Y. Lo, P.-L. Huang, T.-S. Chou, T.-Y. Chang, S.-L. Huang, L. Lin, H.-Y. Lin, F.-C. Ho, Efficient Nd:Y3Al5O12 crystal fiber laser. Jpn. J. Appl. Phys. 41, 1228–1231 (2002) CrossRefADSGoogle Scholar
  24. 24.
    G.A. Bufetova, V.V. Kashin, D.A. Nikolaev, S.Y. Rusanov, V.F. Seregin, V.B. Tsvetkov, I.A. Shcherbakov, A.A. Yakovlev, Neodymium-doped graded-index single-crystal fibre lasers. Quantum Electron. 7, 616 (2006) CrossRefGoogle Scholar
  25. 25.
    B. Chen, J. Dong, M. Patel, Y. Chen, A. Kar, M.A. Bass, Modeling of high-power solid-state slab lasers, in Solid State Lasers XII (SPIE, Bellingham, 2003), Google Scholar
  26. 26.
    T.Y. Fan, Aperture guiding in quasi-3-level lasers. Opt. Lett. 19(8), 554–556 (1994) CrossRefADSGoogle Scholar
  27. 27.
    U. Griebner, R. Grunwald, H. Schonnagel, J. Huschke, G. Erbert, Laser with guided pump and free-propagating resonator mode using diffusion-bonded rectangular channel waveguides. Appl. Phys. Lett. 77(22), 3505–3507 (2000) CrossRefADSGoogle Scholar
  28. 28.
    C.-C. Lai, H.-J. Tsai, K.-Y. Huang, K.-Y. Hsu, Z.-W. Lin, K.-D. Ji, W.-J. Zhuo, S.-L. Huang, Cr4+:YAG double-clad crystal fiber laser. Opt. Lett. 33(24), 2919–2921 (2008) CrossRefADSGoogle Scholar
  29. 29.
    D. Sangla, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, J.M. Fourmigué, O. Tillement, High-power laser with Nd:YAG single-crystal fiber grown by micro-pulling down technique—art. no. 68710X, in Conference on Solid State Lasers XVII (SPIE, Bellingham, 2008) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • D. Sangla
    • 1
    • 2
  • I. Martial
    • 1
    • 3
  • N. Aubry
    • 2
    • 3
  • J. Didierjean
    • 3
  • D. Perrodin
    • 3
  • F. Balembois
    • 1
  • K. Lebbou
    • 2
  • A. Brenier
    • 2
  • P. Georges
    • 1
  • O. Tillement
    • 2
  • J.-M. Fourmigué
    • 3
  1. 1.Laboratoire Charles Fabry de l’Institut d’Optique, CNRSUniv. Paris-SudPalaiseauFrance
  2. 2.CNRS, UMR5620, Laboratoire de Physico-Chimie des Matériaux LuminescentsUniversité de LyonVilleurbanne CedexFrance
  3. 3.Fibercryst SASVilleurbanne CedexFrance

Personalised recommendations