Applied Physics B

, Volume 97, Issue 1, pp 215–225 | Cite as

Mid-infrared laser-absorption diagnostic for vapor-phase measurements in an evaporating n-decane aerosol

Article

Abstract

A novel three-wavelength mid-infrared laser-based absorption/extinction diagnostic has been developed for simultaneous measurement of temperature and vapor-phase mole fraction in an evaporating hydrocarbon fuel aerosol (vapor and liquid droplets). The measurement technique was demonstrated for an n-decane aerosol with D50∼3 μm in steady and shock-heated flows with a measurement bandwidth of 125 kHz. Laser wavelengths were selected from FTIR measurements of the C–H stretching band of vapor and liquid n-decane near 3.4 μm (3000 cm−1), and from modeled light scattering from droplets. Measurements were made for vapor mole fractions below 2.3 percent with errors less than 10 percent, and simultaneous temperature measurements over the range 300 K<T<900 K were made with errors less than 3 percent. The measurement technique is designed to provide accurate values of temperature and vapor mole fraction in evaporating polydispersed aerosols with small mean diameters (D50<10 μm), where near-infrared laser-based scattering corrections are prone to error.

PACS

07.60-j 78.30.Cp 78.20.Ci 42.62.Fi 82.70.Rr 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, R.W. Dibble, In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser-absorption method: discussion of applicability with a homogeneous methane-air mixture. Meas. Sci. Technol. 14(8), 1350–1356 (2003) CrossRefADSGoogle Scholar
  2. 2.
    G.B. Rieker, H. Li, X. Liu, J.T.C. Liu, J.B. Jeffries, R.K. Hanson, M.G. Allen, S.D. Wehe, P.A. Mulhall, H.S. Kindle, A. Kakuho, K.R. Sholes, T. Matsuura, S. Takatani, Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor. Proc. Combust. Inst. 31(2), 3041–3049 (2007) CrossRefGoogle Scholar
  3. 3.
    A. Kakuho, K. Yamaguchi, Y. Hashizume, T. Urushihara, T. Itoh, E. Tomita, A study of air-fuel mixture formation in direct-injection SI engines. SAE paper 2004-01-1946 Google Scholar
  4. 4.
    H. Zhao, N. Ladommatos, Optical diagnostics for in-cylinder mixture formation measurements in IC engines. Prog. Energy Combust. Sci. 24(4), 297–336 (1998) CrossRefGoogle Scholar
  5. 5.
    F.P. Hindle, S.J. Carey, K. Ozanyan, D.E. Winterbone, E.E. Clough, H. McCann, Measurement of gaseous hydrocarbon distribution by a near-infrared absorption tomography system. J. Electron. Imaging 10(3), 593–600 (2001) CrossRefADSGoogle Scholar
  6. 6.
    M.G. Allen, Diode laser absorption sensors for gas-dynamic and combustion flows. Meas. Sci. Technol. 4(4), 545 (1998) CrossRefADSGoogle Scholar
  7. 7.
    R.K. Mongia, E. Tomita, F.K. Hsu, L. Talbot, R.W. Dibble, Use of an optical probe for time-resolved in situ measurement of local air-to-fuel ratio and extent of fuel mixing with applications to low NOx emissions in premixed gas turbines. Proc. Combust. Inst. 26(2), 2749–2755 (1996) Google Scholar
  8. 8.
    V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant. Proc. Combust. Inst. 28(1), 423–430 (2000) CrossRefGoogle Scholar
  9. 9.
    J.Y. Zhu, D. Dunnrankin, Using coherent anti-Stokes–Raman spectroscopy to probe the temperature-field of a combusting droplet stream. Appl. Opt. 30(19), 2672–2674 (1991) CrossRefADSGoogle Scholar
  10. 10.
    F. Beyrau, A. Bräuer, T. Seeger, A. Leipertz, Gas-phase temperature measurement in the vaporizing spray of a gasoline direct-injection injector by use of pure rotational coherent anti-Stokes Raman scattering. Opt. Lett. 29(3), 247–249 (2004) CrossRefADSGoogle Scholar
  11. 11.
    A.A. Rotunno, M. Winter, G.M. Dobbs, L.A. Melton, Direct calibration procedures for exciplex-based vapor/liquid visualization of fuel sprays. Combust. Sci. Technol. 71(4), 247–261 (1990) CrossRefGoogle Scholar
  12. 12.
    H. Kronemayer, K. Omerbegovic, C. Schulz, Quantification of the evaporative cooling in an ethanol spray created by a gasoline direct-injection system measured by multiline NO-LIF gas-temperature imaging. Appl. Opt. 46(34), 8322–8327 (2007) CrossRefADSGoogle Scholar
  13. 13.
    A.R. Chraplyvy, Nonintrusive measurements of vapor concentrations inside sprays. Appl. Opt. 20(15), 2620–2624 (1981) CrossRefADSGoogle Scholar
  14. 14.
    A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, Tunable mid-IR laser absorption sensor for time-resolved hydrocarbon fuel measurements. Proc. Combust. Inst. 31(1), 807–815 (2007) CrossRefGoogle Scholar
  15. 15.
    J.A. Drallmeier, Hydrocarbon vapor measurements in fuel sprays: a simplification of the infrared extinction technique. Appl. Opt. 33(30), 7175–7179 (1994) CrossRefADSGoogle Scholar
  16. 16.
    W. Chen, J. Cousin, E. Poullet, J. Burie, D. Boucher, X. Gao, M.W. Sigrist, F.K. Tittel, Continuous-wave mid-infrared laser sources based on difference frequency generation. C. R. Phys. 8(10), 1129–1150 (2007) ADSGoogle Scholar
  17. 17.
    D. Richter, P. Weibring, Ultra-high precision mid-IR spectrometer I: Design and analysis of an optical fiber pumped difference-frequency generation source. Appl. Phys. B, Lasers Opt. 82(3), 479–486 (2006) CrossRefADSGoogle Scholar
  18. 18.
    A.E. Klingbeil, J.M. Porter, J.B. Jeffries, R.K. Hanson, Two-wavelength mid-IR absorption diagnostic for simultaneous measurement of temperature and hydrocarbon fuel concentration. Proc. Combust. Inst. 32, 821–829 (2009) CrossRefGoogle Scholar
  19. 19.
    C.N. Banwell, E.M. McCash, Fundamentals of Molecular Spectroscopy (McGraw-Hill, New York, 1994) Google Scholar
  20. 20.
    W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, Berlin, 1996) Google Scholar
  21. 21.
    C. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998) CrossRefGoogle Scholar
  22. 22.
    H.C.v.d. Hulst, Light Scattering by Small Particles (Dover, New York, 1981) Google Scholar
  23. 23.
    J. Kashdan, T. Hanson, E. Piper, D. Davidson, R. Hanson, A new facility for the study of shock wave induced combustion of liquid fuels, 5–8 January 2004 Google Scholar
  24. 24.
    M. Born, E. Wolf, Principles of Optics; Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon Press, Elmsford, 1959) MATHGoogle Scholar
  25. 25.
    American Petroleum Institute, Catalog of Infrared Spectral Data; Numerical Index to the Catalog of Infrared Spectral Data (Chemical and Petroleum Research Laboratory, Carnegie Institute of Technology, Pittsburgh, 1959). Google Scholar
  26. 26.
    A. Tuntomo, C.L. Tien, S.H. Park, Optical constants of liquid hydrocarbon fuels. Combust. Sci. Technol. 84(1), 133–140 (1992) CrossRefGoogle Scholar
  27. 27.
    M.R. Anderson, J.A. Drallmeier, Determination of infrared optical constants for single component hydrocarbon fuels. Master’s thesis, Missouri University of Science and Technology, 2000 Google Scholar
  28. 28.
    J. Bertie, C. Keefe, R. Jones, Infrared intensities of liquids VIII. Accurate baseline correction of transmission spectra of liquids for computation of absolute intensities, and the 1036 cm −1 band of benzene as a potential intensity standard. Can. J. Chem. 69, 1609–1618 (1991) CrossRefGoogle Scholar
  29. 29.
    J.E. Bertie, C.D. Keefe, Comparison of infrared absorption intensities of benzene in the liquid and gas phases. J. Chem. Phys. 101(6), 4610–4616 (1994) CrossRefADSGoogle Scholar
  30. 30.
    J.P. Hawranek, P. Neelakantan, R.P. Young, R.N. Jones, The control of errors in IR spectrophotometry–III. Transmission measurements using thin cells. Spectrochim. Acta, Part A, Mol. Spectrosc. 32(1), 75–84 (1976) CrossRefADSGoogle Scholar
  31. 31.
    J.P. Hawranek, P. Neelakantan, R.P. Young, R.N. Jones, The control of errors in IR spectrophotometry—IV. Corrections for dispersion distortion and the evaluation of both optical constants. Spectrochim. Acta, Part A, Mol. Spectrosc. 32(1), 85–98 (1976) CrossRefADSGoogle Scholar
  32. 32.
    J.M. Porter, J.B. Jeffries, R.K. Hanson, Mid-infrared absorption measurements of liquid hydrocarbon fuels near 3.4 μm. J. Quant. Spectrosc. Radiat. Transf. 1(1) (2009). doi:10.1016/j.jqsrt.2009.05.017
  33. 33.
    D.C. Keefe, Computer programs for the determination of optical constants from transmission spectra and the study of absolute absorption intensities. J. Mol. Struct. 641(2–3), 165–173 (2002) CrossRefADSGoogle Scholar
  34. 34.
    T.A. Germer, Scatmech: Polarized light scattering c++ class library, 2008 Google Scholar
  35. 35.
    A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons. J. Quant. Spectrosc. Radiat. Transf. 107(3), 407–420 (2007) CrossRefADSGoogle Scholar
  36. 36.
    S.W. Sharpe, T.J. Johnson, R.L. Sams, P.M. Chu, G.C. Rhoderick, P.A. Johnson, Gas-phase databases for quantitative infrared spectroscopy. Appl. Spectrosc. 58(12), 1452–1461 (2004) CrossRefADSGoogle Scholar
  37. 37.
    D.F. Davidson, D.R. Haylett, R.K. Hanson, Development of an aerosol shock tube for kinetic studies of low-vapor-pressure fuels. Combust. Flame 155(1–2), 108–117 (2008) CrossRefGoogle Scholar
  38. 38.
    A. Guha, Jump conditions across normal shock waves in pure vapour-droplet flows. J. Fluid Mech. 241, 349–369 (1992) CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations