Applied Physics B

, Volume 96, Issue 4, pp 843–862 | Cite as

Flame front tracking in turbulent lean premixed flames using stereo PIV and time-sequenced planar LIF of OH

  • G. Hartung
  • J. Hult
  • R. Balachandran
  • M. R. Mackley
  • C. F. Kaminski


This paper describes the simultaneous application of time-sequenced laser-induced fluorescence imaging of OH radicals and stereoscopic particle image velocimetry for measurements of the flame front dynamics in lean and premixed LP turbulent flames. The studied flames could be acoustically driven, to simulate phenomena important in LP combustion technologies. In combination with novel image post processing techniques we show how the data obtained can be used to track the flame front contour in a plane defined by the illuminating laser sheets. We consider effects of chemistry and convective fluid motion on the dynamics of the observed displacements and analyse the influence of turbulence and acoustic forcing on the observed contour velocity, a quantity we term as sd2D. We show that this quantity is a valuable and sensitive indicator of flame turbulence interactions, as (a) it is measurable with existing experimental methodologies, and (b) because computational data, e.g. from large eddy simulations, can be post processed in an identical fashion. sd2D is related (to a two-dimensional projection) of the three-dimensional flame displacement speed sd, but artifacts due to out of plane convective motion of the flame surface and the uncertainty in the angle of the flame surface normal have to be carefully considered. Monte Carlo simulations were performed to estimate such effects for several distributions of flame front angle distributions, and it is shown conclusively that sd2D is a sensitive indicator of a quantity related to sd in the flames we study. sd2D was shown to increase linearly both with turbulent intensity and with the amplitude of acousting forcing for the range of conditions studied.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Klein, N. Chakraborty, K.W. Jenkins, R.S. Cant, Experimental investigation of three-dimensional flame-front structure in premixed turbulent combustion—II. Lean hydrogen/air Bunsen flames. Phys. Fluids 18(055102), 1–15 (2006) MathSciNetGoogle Scholar
  2. 2.
    N. Swaminathan, R.W. Bilger, G.R. Ruetsch, Interdependence of the instantaneous flame front structure and the overall scalar flux in turbulent premixed flames. Combust. Sci. Technol. 128, 73–97 (1997) CrossRefGoogle Scholar
  3. 3.
    A. Lipatnikov, J. Chomiak, A theoretical study of premixed turbulent flame development. Combust. Inst. 30, 843–850 (2005) CrossRefGoogle Scholar
  4. 4.
    J. Fielding, M.B. Long, G. Fielding, M. Komiyama, Systematic errors in optical-flow velocimetry for turbulent flows and flames. Appl. Opt. 40 (2000) Google Scholar
  5. 5.
    S. Gashi, J. Hult, K.W. Jenkins, N. Chakraborty, R.S. Cant, C. Kaminski, Curvature and wrinkling of premixed flame kernels—comparison of OH-PLIF and DNS data. Proc. Combust. Inst. 30, 809–817 (2005) CrossRefGoogle Scholar
  6. 6.
    J. Hult, M. Richter, J. Nygren, M. Aldén, A. Hultqvist, M. Christensen, B. Johansson, Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines. Appl. Opt. 41(24), 5002–5014 (2002) CrossRefADSGoogle Scholar
  7. 7.
    T.W. Lee, S.J. Lee, Direct comparison of turbulent burning velocity and flame surface properties in turbulent premixed flames. Combust. Flame 132, 492–502 (2003) CrossRefGoogle Scholar
  8. 8.
    E. Conte, K. Boulouchus, Experimental investigation into the effect of reformer gas addition on flame speed and flame front propagation in premixed, homogeneous charge gasoline engines. Combust. Flame 146, 329–347 (2006) CrossRefGoogle Scholar
  9. 9.
    Y.C. Chen, R.W. Bilger, Experimental investigation of three-dimensional flame-front structure in premixed turbulent combustion—II. Lean hydrogen/air Bunsen flames. Combust. Flame 138, 155–174 (2004) CrossRefGoogle Scholar
  10. 10.
    R. Abu-Gharbieh, G. Hamarneh, T. Gustavsson, C.F. Kaminski, Level set curve matching and particle image velocimetry for resolving chemistry and turbulence interactions in propagating flames. J. Math. Imaging Vis. 19, 199–218 (2003) CrossRefGoogle Scholar
  11. 11.
    C.F. Kaminski, X.S. Bai, J. Hult, A. Dreizler, S. Lindenmaier, L. Fuchs, Flame growth and wrinkling in a turbulent flow. Appl. Phys. B, Lasers Opt. 71, 711–716 (2000) CrossRefADSGoogle Scholar
  12. 12.
    J. Hult, U. Meier, W. Meier, A. Harvey, C.F. Kaminski, Experimental analysis of local flame extinction in a turbulent jet diffusion flame by high repetition 2D laser techniques and multi-scalar measurements. Proc. Combust. Inst. 30, 701–709 (2005) CrossRefGoogle Scholar
  13. 13.
    C.F. Kaminski, J. Hult, M. Alden, High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame. Appl. Phys. B, Lasers Opt. 68, 757–760 (1999) CrossRefADSGoogle Scholar
  14. 14.
    T. Echekki, J.H. Chen, Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame 116, 184–202 (1996) CrossRefGoogle Scholar
  15. 15.
    N. Chakraborty, E. Mastorakos, Numerical investigation of edge flame propagation characteristics in turbulent mixing layers. Phys. Fluids 18(105103), 513–523 (2006) Google Scholar
  16. 16.
    N. Chakraborty, R.S. Cant, Influence of Lewis number on strain rate effects in turbulent premixed flame propagation. Heat Mass Transf. 49, 2158–2172 (2006) CrossRefGoogle Scholar
  17. 17.
    C. Pantano, Direct simulations of non-premixed flame extinction in a methane-air jet with reduced chemistry. J. Fluid Mech. 541, 231–270 (2004) CrossRefADSGoogle Scholar
  18. 18.
    C. Yoo, H.G. Im, Transient dynamics of edge flames in a laminar nonpremixed hydrogen-air counterflow. Proc. Combust. Inst. 30, 349–356 (2004) CrossRefGoogle Scholar
  19. 19.
    N. Peters, P. Terhoeven, J.H. Chen, T. Echekki, Statistics of flame displacement speeds from computations of 2D methane-air flames. Proc. Combust. Inst. 27, 833–840 (1998) Google Scholar
  20. 20.
    N. Chakraborty, R.S. Cant, Unsteady effects of strain rate and curvature on turbulent premixed flames in inlet-outlet configuration. Combust. Flame 137, 129–147 (2004) CrossRefGoogle Scholar
  21. 21.
    N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000) MATHGoogle Scholar
  22. 22.
    B. Ayoola, G. Hartung, C.A. Armitage, J. Hult, R.S. Cant, C.F. Kaminski, Temperature response of turbulent premixed flames to inlet velocity oscillations. Exp. Fluids 46, 27–41 (2009) CrossRefGoogle Scholar
  23. 23.
    R. Balachandran, B.O. Ayoola, C.F. Kaminski, A.P. Dowling, E. Mastorakos, Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame 143(1–2), 37–55 (2005) CrossRefGoogle Scholar
  24. 24.
    R. Balchandran, Experimental investigation of the response of turbulent premixed flames to acoustic oscillations, Ph.D. thesis, University of Cambridge, Department of Engineering, Cambridge, UK, 2006 Google Scholar
  25. 25.
    B.O. Ayoola, R. Balachandran, J.H. Frank, E. Mastorakos, C.F. Kaminski, Spatially resolved heat release rate measurements in turbulent premixed flames. Combust. Flame 144(1–2), 1–16 (2006) CrossRefGoogle Scholar
  26. 26.
    G. Hartung, J. Hult, C.F. Kaminski, J. Rogerson, N. Swaminathan, Effect of heat release on turbulence and its interaction with scalar in premixed combustion. Phys. Fluids 20, 445–473 (2008) CrossRefGoogle Scholar
  27. 27.
    F. Scarano, M.L. Riethmuller, Iterative multigrid approach in PIV image processing with discrete window offset. Exp. Fluids 26(12), 513–523 (1999) CrossRefGoogle Scholar
  28. 28.
    H. Malm, G. Sparr, J. Hult, C.F. Kaminski, Nonlinear diffusion filtering of images obtained by planar laser-induced fluorescence spectroscopy. J. Opt. Soc. Am. A 17(12), 2148–2156 (2000) CrossRefADSGoogle Scholar
  29. 29.
    J. Canny, A computational approach to edge-detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986) CrossRefGoogle Scholar
  30. 30.
    IDL, IDL—technical programming language., 2007
  31. 31.
    K. Jambunathan, X.Y. Ju, B.N. Dobbins, S. Ashforthfrost, An improved cross-correlation technique for particle image velocimetry. Meas. Sci. Technol. 6(5), 507–514 (1995) CrossRefADSGoogle Scholar
  32. 32.
    I. Boxx, C. Kittler, R. Gordon, B. Böhm, M. Aigner, A. Dreizler, W. Meier, Simultaneous three component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-argon jet diffusion flame at 1.5 kHz repetition rate. Proc. Combust. Inst. 32(1), 905–912 (2009) CrossRefGoogle Scholar
  33. 33.
    A.M. Steinberg, J.F. Driscoll, S.L. Ceccio, Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV. Exp. Fluids 44, 985–999 (2008) CrossRefGoogle Scholar
  34. 34.
    R. Chrystie, I.S. Burns, J. Hult, C. Kaminski, On the improvement of two-dimensional curvature computation and its application to turbulent premixed flame correlations. Meas. Sci. Technol. 19, 125503 (2008) CrossRefADSGoogle Scholar
  35. 35.
    J. Rehm, N. Clemens, The association of scalar dissipation rate layers and the OH zones with strain, vorticity, and 2D dilitation fields in turbulent nonpremixed jets and jet flames, American Institute of Aeronautics and Astronautics, Reston, VA. Paper No. AIAA-99-0676, 1999 Google Scholar
  36. 36.
    Y.-C. Chen, R.W. Bilger, Experimental investigation of three-dimensional flame front structure in premixed turbulent combustion—I: hydrocarbon/air Bunsen flames. Combust. Flame 131(4), 400–435 (2002) CrossRefGoogle Scholar
  37. 37.
    T. Hirasawa, C.J. Sung, A. Joshi, Z. Yang, H. Wang, C.K. Law, Determination of laminar flame speeds using digital particle image velocimetry: binary fuel blends of ethylene, n-butane, and toluene. Proc. Combust. Inst. 29, 1427–1434 (2002) CrossRefGoogle Scholar
  38. 38.
    R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller, A FORTRAN program for modelling steady laminar one-dimensional premixed flames. Sandia National Laboratories Report SAND85-8240, 1993 Google Scholar
  39. 39.
    P. Flohr, H. Pitsch, A turbulent flame speed closure model for LES of industrial burner flows, Centre of Turbulence Research, Proceedings of the summer programme, University of Stanford, Stanford, USA, 2000, pp. 169–179 Google Scholar
  40. 40.
    V.L. Zimont, A.N. Lipatnikov, A numerical model of premixed turbulent combustion of gases. Chem. Phys. Rep. 14(7), 993–1025 (1995) Google Scholar
  41. 41.
    J. Hult, S. Gashi, N. Chakraborty, M. Klein, K.W. Jenkins, S. Cant, C.F. Kaminski, Measurement of flame surface density for turbulent premixed flames using PLIF and DNS. Combust. Inst. 31, 1319–1326 (2007) CrossRefGoogle Scholar
  42. 42.
    B. Ayoola, Laser-based measurement of heat release rate and temperature in turbulent premixed flames, Ph.D. thesis, University of Cambridge, Department of Chemical Engineering, Cambridge, UK, 2006 Google Scholar
  43. 43.
    J.H.C.N. Chakraborty, E.R. Hawkes, R.S. Cant, Effects of strain rate and curvature on surface density function transport in turbulent premixed CH4-air and H2-air flames: A comparative study. Combust. Flame 154, 259–280 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • G. Hartung
    • 1
  • J. Hult
    • 1
  • R. Balachandran
    • 2
  • M. R. Mackley
    • 1
  • C. F. Kaminski
    • 1
    • 3
  1. 1.Department of Chemical EngineeringUniversity of CambridgeCambridgeUK
  2. 2.Department of Mechanical EngineeringUniversity College LondonLondonUK
  3. 3.SAOT School of Advanced Optical Technologies, Max Planck Institute for the Science of Light, Division IIIUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations