Applied Physics B

, Volume 97, Issue 1, pp 175–179 | Cite as

Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns

  • T. Xu
  • L. Fang
  • J. Ma
  • B. Zeng
  • Y. Liu
  • J. Cui
  • C. Wang
  • Q. Feng
  • X. Luo
Article

Abstract

Superlens, which is proposed to realize sub-diffraction-limited optical imaging, has been experimentally verified (N. Fang et al., Science 308, 534 (2005), D. Melville and R.J. Blaikie, Opt. Express 13, 2127 (2005)). Based on the basic experimental configuration, here we propose a metal-cladding structure developed to effectively localize the surface plasmons for projecting deep-subwavelength patterns. We give a numerical analysis on the structure and show that proper choices of incident wavelength can realize either deep-subwavelength interference patterning or high-quality optical imaging. The study presented here is believed to provide an approach for developing high-resolution optical lithography.

PACS

73.20.Mf 42.25.Bs 42.25.Hz 81.16.Nd 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988), Chap. 2, pp. 4–7 Google Scholar
  2. 2.
    J. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000) CrossRefADSGoogle Scholar
  3. 3.
    N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens, Science 308, 534 (2005) Google Scholar
  4. 4.
    D. Melville, R.J. Blaikie, Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127 (2005) CrossRefADSGoogle Scholar
  5. 5.
    R.J. Blaikie, M.M. Alkaisi, S.J. McNab, D.O.S. Melville, Nanoscale optical patterning using evanescent fields and surface plasmons. Int. J. Nanosci. 3, 405–417 (2004) CrossRefGoogle Scholar
  6. 6.
    M.J. Weber, Handbook of Optical Materials (CRC, Boston, 2003) Google Scholar
  7. 7.
    F. Villa, T. Lopez Rios, L.E. Regalado, Electromagnetic modes in metal-insulator-metal structures. Phys. Rev. B 63, 165103 (2001) CrossRefADSGoogle Scholar
  8. 8.
    J.A. Dionne, L.A. Sweatlock, H.A. Atwater, A. Polman, Plasmon slot waveguide: Towards chip-scale propagation with subwavelength scale localization. Phys. Rev. B 73, 035407 (2006) CrossRefADSGoogle Scholar
  9. 9.
    M.G. Moharam, T.K. Gaylord, Rigorous coupled-wave analysis of planar grating diffraction. J. Opt. Soc. Am. 71, 811–818 (1981) CrossRefADSGoogle Scholar
  10. 10.
    X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780 (2004) CrossRefADSGoogle Scholar
  11. 11.
    Z. Liu, Q. Wei, X. Zhang, Surface plasmon interference nanolithography. Nano Lett. 5, 957 (2005) CrossRefADSGoogle Scholar
  12. 12.
    M. Derouard, J. Hazart, G. Lerondel, R. Bachelot, P. Adam, P. Royer, Polarization-sensitive printing of surface plasmon interferences. Opt. Express 15, 4238 (2007) CrossRefADSGoogle Scholar
  13. 13.
    T. Xu, Y.H. Zhao, J.X. Ma, C.T. Wang, J.H. Cui, C.L. Du, X.G. Luo, Sub-diffraction-limited interference photolithography with metamaterials. Opt. Express 18, 13579 (2008) CrossRefGoogle Scholar
  14. 14.
    Y. Xiong, Z. Liu, X. Zhang, Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers. Appl. Phys. Lett. 93, 111116 (2008) CrossRefADSGoogle Scholar
  15. 15.
    M.D. Arnold, R.J. Blaikie, Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs. Opt. Express 15, 11542 (2007) CrossRefADSGoogle Scholar
  16. 16.
    S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105 (2007) CrossRefADSGoogle Scholar
  17. 17.
    S.H. Lim, W. Mar, P. Matheu, D. Derkacs, E.T. Yu, Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J. Appl. Phys. 101, 104309 (2007) CrossRefADSGoogle Scholar
  18. 18.
    A.J. Morfa, K.L. Rowlen, T.H. Reilly III, M.J. Romero, J. van de Lagemaat, Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett. 92, 031504 (2008) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • T. Xu
    • 1
  • L. Fang
    • 1
  • J. Ma
    • 2
  • B. Zeng
    • 1
  • Y. Liu
    • 1
  • J. Cui
    • 1
  • C. Wang
    • 1
  • Q. Feng
    • 1
  • X. Luo
    • 1
  1. 1.State Key Laboratory of Optical Technologies for Microfabrication, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina
  2. 2.Advanced Technology Research CenterShenzhen UniversityShenzhenChina

Personalised recommendations