Applied Physics B

, Volume 96, Issue 4, pp 657–669 | Cite as

Comparison of LII derived soot temperature measurements with LII model predictions for soot in a laminar diffusion flame

  • D. R. Snelling
  • K. A. Thomson
  • F. Liu
  • G. J. Smallwood
Article

Abstract

Laser-induced incandescence (LII) was used to derive temperatures of pulsed laser heated soot particles from their thermal emission intensities detected at two wavelengths in a laminar ethylene/air co-annular diffusion flame. The results are compared to those of a numerical nanoscale heat and mass transfer model. Both aggregate and primary particle soot size distributions were measured using transmission electron microscopy (TEM). The model predictions were numerically averaged over these experimentally derived size distributions. The excitation laser wavelength was 532 nm, and the LII signal was detected at 445 nm and 780 nm. A wide range of laser fluence from very low to moderate (0.13 to 1.56 mJ/mm2) was used in the experiments. A large part of the temporal decay curve, beginning 12–15 nsec after the peak of the laser excitation pulse, is successfully described by the model, resulting in the determination of accommodation coefficients, which varies somewhat with soot temperature and is in the range of 0.36 to 0.46. However, in the soot evaporative regime, the model greatly overpredicts the cooling rate shortly after the laser pulse. At lower fluences, where evaporation is negligible, the initial experimental cooling rates, immediately following the laser pulse, are anomalously high. Potential physical processes that could account for these effects are discussed. From the present data the soot absorption function, E(m), of 0.4 at 532 nm is obtained. A procedure for correcting the measured signals for the flame radiation is presented. It is further shown that accounting for the local gas temperature increase due to heat transfer from soot particles to the gas significantly improves the agreement in the temperature dependence of soot cooling rates between model and experiments over a large range of laser fluences.

PACS

44.40.+a 78.20.Bh 07.20.Ka 42.62.-b 

References

  1. 1.
    C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B, Lasers Opt. 83(3), 333 (2006) CrossRefADSGoogle Scholar
  2. 2.
    H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.E. Bengtsson, H. Bockhorn, F. Foucher, K.P. Geigle, C. Mounaim Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B, Lasers Opt. 87(3), 503 (2007) CrossRefADSGoogle Scholar
  3. 3.
    A.C. Eckbreth, J. Appl. Phys. 48(11), 4473 (1977) CrossRefADSGoogle Scholar
  4. 4.
    L.A. Melton, Appl. Opt. 23(13), 2201 (1984) CrossRefADSGoogle Scholar
  5. 5.
    C.J. Dasch, Proc. Combust. Inst. 20, 1231 (1984) Google Scholar
  6. 6.
    H.A. Michelsen, J. Chem. Phys. 118(15), 7012 (2003) CrossRefADSGoogle Scholar
  7. 7.
    A.V. Filippov, M. Zurita, D.E. Rosner, J. Colloid Interface Sci. 229(1), 261 (2000) CrossRefGoogle Scholar
  8. 8.
    F. Liu, G.J. Smallwood, D.R. Snelling, J. Quant. Spectrosc. Radiat. Transf. 93, 301 (2005) CrossRefADSGoogle Scholar
  9. 9.
    F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Appl. Phys. B, Lasers Opt. 83(3), 383 (2006) CrossRefADSGoogle Scholar
  10. 10.
    V. Beyer, D.A. Greenhalgh, Appl. Phys. B, Lasers Opt. 83(3), 455 (2006) CrossRefADSGoogle Scholar
  11. 11.
    A. Boiarciuc, F. Foucher, C. Mounaim Rousselle, Appl. Phys. B, Lasers Opt. 83(3), 413 (2006) CrossRefADSGoogle Scholar
  12. 12.
    S. De Iuliis, F. Cignoli, G. Zizak, Appl. Opt. 44(34), 7414 (2005) CrossRefADSGoogle Scholar
  13. 13.
    T. Lehre, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 2, 2585 (2004) Google Scholar
  14. 14.
    M. Charwath, R. Suntz, H. Bockhorn, Appl. Phys. B, Lasers Opt. 83(3), 435 (2006) CrossRefADSGoogle Scholar
  15. 15.
    B.F. Kock, B. Tribalet, C. Schulz, P. Roth, Combust. Flame 147(1–2), 79 (2006) CrossRefGoogle Scholar
  16. 16.
    F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B, Lasers Opt. 83(3), 355 (2006) CrossRefADSGoogle Scholar
  17. 17.
    D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44(31), 6773 (2005) CrossRefADSGoogle Scholar
  18. 18.
    D.R. Snelling, K.A. Thomson, G.J. Smallwood, Ö.L. Gülder, Appl. Opt. 38(12), 2478 (1999) CrossRefADSGoogle Scholar
  19. 19.
    Ö.L. Gülder, D.R. Snelling, R.A. Sawchuk, Proc. Combust. Inst. 26, 2351 (1996) Google Scholar
  20. 20.
    G.J. Smallwood, D.R. Snelling, F. Liu, Ö.L. Gülder, J. Heat Transfer Trans. ASME 123(4), 814 (2001) CrossRefGoogle Scholar
  21. 21.
    K. Tian, F. Liu, K.A. Thomson, D.R. Snelling, G.J. Smallwood, D.S. Wang, Combust. Flame 138(1–2), 195 (2004) CrossRefGoogle Scholar
  22. 22.
    K. Tian, K.A. Thomson, F. Liu, D.R. Snelling, G.J. Smallwood, D.S. Wang, Combust. Flame 144(4), 782 (2006) CrossRefGoogle Scholar
  23. 23.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136(1–2), 180 (2004) CrossRefGoogle Scholar
  24. 24.
    E. Therssen, Y. Bouvier, C. Schoemaecker Moreau, X. Mercier, P. Desgroux, M. Ziskind, C. Focsa, Appl. Phys. B, Lasers Opt. 89(2–3), 417 (2007) ADSGoogle Scholar
  25. 25.
    T.C. Bond, R.W. Bergstrom, Aerosol Sci. Technol. 40(1), 1 (2006) CrossRefGoogle Scholar
  26. 26.
    H.A. Michelsen, Appl. Phys. B, Lasers Opt. 94(1), 103 (2009) CrossRefADSGoogle Scholar
  27. 27.
    S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Combust. Flame 120(4), 439 (2000) CrossRefGoogle Scholar
  28. 28.
    H. Chang, T.T. Charalampopoulos, Proc. R. Soc. Lond., Ser. A 430(1880), 577 (1990) CrossRefADSGoogle Scholar
  29. 29.
    E.H. Kennard, Kinetic Theory of Gases (McGraw Hill, New York, 1938) Google Scholar
  30. 30.
    A.S. Cukrowski, S. Fritzsche, Ann. Phys. 48(6), 377 (1991) CrossRefGoogle Scholar
  31. 31.
    C.J. Knight, AIAA J. 17(5), 519 (1979) CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    R. Kelly, R.W. Dreyfus, Surf. Sci. 198(1–2), 263 (1988) CrossRefADSGoogle Scholar
  33. 33.
    R.W. Dreyfus, R. Kelly, R.E. Walkup, Nucl. Instrum. Methods Phys. Res., Sect. B Beam Interact. Mater. At. 4, 557 (1987) ADSGoogle Scholar
  34. 34.
    A.V. Gusarov, A.G. Gnedovets, I. Smurov, J. Appl. Phys. 88(7), 4352 (2000) CrossRefADSGoogle Scholar
  35. 35.
    R. Kelly, A. Miotello, A. Mele, A.G. Guidoni, J.W. Hastie, P.K. Schenck, H. Okabe, Appl. Surf. Sci. 133(4), 251 (1998) CrossRefADSGoogle Scholar
  36. 36.
    C.J. Knight, AIAA J. 20(7), 950 (1982) CrossRefADSGoogle Scholar
  37. 37.
    G.A. Lukyanov, Y. Khang, D.V. Leshchev, S.V. Kozyrev, A.N. Volkov, N.Y. Bykov, O.I. Vakulova, Fuller. Nanotub. Carbon Nanostruct. 14(2–3), 507 (2006) CrossRefGoogle Scholar
  38. 38.
    G.A. Lukyanov, A.N. Volkov, Y. Khang, S.V. Kozyrev, D.V. Leshchev, N.Y. Bykov, O.I. Vakulova, J. Phys., Conf. Ser. 59, 164 (2007) CrossRefADSGoogle Scholar
  39. 39.
    R. Kelley, A. Miotello, Nucl. Instrum. Methods Phys. Res. B 91, 682 (1994) CrossRefADSGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2009

Authors and Affiliations

  • D. R. Snelling
    • 1
  • K. A. Thomson
    • 1
  • F. Liu
    • 1
  • G. J. Smallwood
    • 1
  1. 1.ICPET, National Research Council CanadaOttawaCanada

Personalised recommendations