Applied Physics B

, 97:607

Excitation pathways and efficiency of Eu ions in GaN by site-selective spectroscopy

  • Z. Fleischman
  • C. Munasinghe
  • A. J. Steckl
  • A. Wakahara
  • J. Zavada
  • V. Dierolf
Article

Abstract

Using combined excitation emission spectroscopy, we performed a comparative study of europium ions in GaN in samples that have been in situ doped during interrupted growth epitaxy (IGE) or conventional molecular beam epitaxy (MBE) as well as samples that were grown using organometallic vapor phase epitaxy (OMVPE) and subsequently ion implanted with Eu ions. Through site-selective resonant excitation, we are able to unambiguously assign all major observed transitions to a combination of different incorporation sites and electron–phonon coupled transitions. We identified at least nine different incorporation sites of Eu ions in GaN and studied how these sites behave under different excitation conditions and how their relative number is modified by different growth and doping conditions. The coupling to phonons has also been studied for a series of AlxGa1−xN samples with x=0…1. We find that a main site most resembling an unperturbed Eu ion on Ga site is always dominant, while the minority sites are changing substantially in relative numbers and can occur in some samples fairly close in emission intensity to the main site. In terms of the excitation pathway after the creation of electron-hole pairs, we found three types of centers: (1) sites that are dominantly excited through shallow defect traps; (2) sites that are excited through a deep defect trap; (3) sites that cannot be excited at all including the majority of the main sites. We interpret this finding to indicate that the ion in this environment is not very efficient in trapping excitation and that the indirect excitation involving other traps depends on the ion/trap distance. Many of the main sites are far away from these traps and cannot be excited through this channel at all. The efficiency of excitation is highest for the deep traps, indicating that it would be desirable to enrich the respective site, as has been done with some success in the IGE grown samples.

PACS

71.55.Eq 71.70.Ch 78.55.Cr 78.60.Hk 

References

  1. 1.
    A.J. Steckl, J.C. Heikenfeld, D.S. Lee, M.J. Garter, C.C. Baker, Y.Q. Wang, R. Jones, Rare-earth-doped GaN: Growth, properties, and fabrication of electroluminescent devices. IEEE J. Sel. Top. Quantum Electron. 8, 749–766 (2002) CrossRefGoogle Scholar
  2. 2.
    J.H. Park, A.J. Steckl, Laser action in Eu-doped GaN thin-film cavity at room temperature. Appl. Phys. Lett. 85, 4588–4590 (2004) CrossRefADSGoogle Scholar
  3. 3.
    C. Munasinghe, A.J. Steckl, GaN: Eu electroluminescent devices grown by interrupted growth epitaxy. Thin Solid Films 496, 636–642 (2006) CrossRefADSGoogle Scholar
  4. 4.
    J.H. Park, A.J. Steckl, Visible lasing from GaN: Eu optical cavities on sapphire substrates. Opt. Mater. 28, 859–863 (2006) CrossRefADSGoogle Scholar
  5. 5.
    J.H. Park, A.J. Steckl, Site specific Eu3+ stimulated emission in GaN host. Appl. Phys. Lett. 88, 011111 (2006) CrossRefADSGoogle Scholar
  6. 6.
    U. Hömmerich, E.E. Nyein, D.S. Lee, J. Heikenfeld, A.J. Steckl, J.M. Zavada, Photoluminescence studies of rare earth (Er, Eu, Tm) in situ doped GaN. Mat. Sci. Eng. B 105, 91–96 (2003) CrossRefGoogle Scholar
  7. 7.
    H. Peng, C. Lee, H.O. Everitt, C. Munasinghe, D.S. Lee, A.J. Steckl, Spectroscopic and energy transfer studies of Eu3+ centers in GaN. J. Appl. Phys. 102, 073520 (2007) CrossRefADSGoogle Scholar
  8. 8.
    L. Bodiou, A. Braud, J.L. Doualan, R. Moncorge, K. Lorenz, E. Alves, Two colour experiments in Eu3+ implanted GaN. J. Alloys Comput. 451, 140–142 (2008) CrossRefGoogle Scholar
  9. 9.
    S. Tafon Penn, Z. Fleischman, V. Dierolf, Site-specific excitation of Eu ions in GaN. Phys. Stat. Sol. (a) 205(1), 30–33 (2008) CrossRefGoogle Scholar
  10. 10.
    L. Bodiou, A. Braud, J.-L. Doualan, R. Moncorgé, J.H. Park, C. Munasinghe, A.J. Steckl, K. Lorenz, E. Alves, B. Daudin, Optically active centers in Eu implanted, Eu in situ doped GaN, and Eu doped GaN quantum dots. J. Appl. Phys. 105, 043104 (2009) CrossRefADSGoogle Scholar
  11. 11.
    G. Metcalfe, E. Readinger, P. Shen, N. Woodward, V. Dierolf, M. Wraback, Crystal-field split levels of Nd3+ ions in GaN measured by luminescence spectroscopy. J. Appl. Phys. 105, 053101 (2009) CrossRefADSGoogle Scholar
  12. 12.
    V. Dierolf, C. Sandmann, J. Zavada, P. Chow, B. Hertog, Site-selective spectroscopy of Er in GaN. J. Appl. Phys. 95, 5464–5470 (2004) CrossRefADSGoogle Scholar
  13. 13.
    H.J. Bang, S. Morishima, J. Sawahata, J. Seo, M. Takiguchi, M. Tsunemi, K. Akimoto, M. Nomura, Concentration quenching of Eu-related luminescence in Eu-doped GaN. Appl. Phys. Lett. 85, 227–229 (2004) CrossRefADSGoogle Scholar
  14. 14.
    E.E. Nyein, U. Hommerich, J. Heikenfeld, D.S. Lee, A.J. Steckl, J.M. Zavada, Spectral and time-resolved photoluminescence studies of Eu-doped GaN. Appl. Phys. Lett. 82, 1655–1657 (2003) CrossRefADSGoogle Scholar
  15. 15.
    H.Y. Peng, C.W. Lee, H.O. Everitt, D.S. Lee, A.J. Steckl, J.M. Zavada, Effect of optical excitation energy on the red luminescence of Eu3+ in GaN. Appl. Phys. Lett. 86, 051110 (2005) CrossRefADSGoogle Scholar
  16. 16.
    V. Dierolf, Z. Fleischman, C. Sandmann, A. Wakahara, T. Fujiwara, C. Munasinghe, A. Steckl, Combined excitation emission spectroscopy of europium ions in GaN and AlGaN films, in Mater. Res. Soc. Symp. Proc., vol. 866, V3.6.1 (2005) Google Scholar
  17. 17.
    J. Hite, G.T. Thaler, R. Khanna, C.R. Abernathy, S.J. Pearton, J.H. Park, A.J. Steckl, J.M. Zavada, Optical and magnetic properties of Eu-doped GaN. Appl. Phys. Lett. 89, 132119 (2006) CrossRefADSGoogle Scholar
  18. 18.
    T. Fujiwara, A. Wakahara, Y. Nakanishi, A. Yoshida, Photoluminescence properties of Eu-implanted AlN. Phys. Stat. Sol. (c) 2805–2808 (2005) Google Scholar
  19. 19.
    T. Monteiro, C. Boemare, M.J. Soares, R.A.S. Ferreira, L.D. Carlos, K. Lorenz, R. Vianden, E. Alves, Photoluminescence and lattice location of Eu and Pr implanted GaN samples. Physica B 308, 22–25 (2001) CrossRefADSGoogle Scholar
  20. 20.
    M. Pan, A.J. Steckl, Red emission from Eu-doped GaN luminescent films grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 83, 9–11 (2003) CrossRefADSGoogle Scholar
  21. 21.
    S. Kim, S.J. Rhee, D.A. Turnbull, E.E. Reuter, X. Li, J.J. Coleman, S.G. Bishop, Observation of multiple Er3+ sites in Er-implanted GaN by site-selective photoluminescence excitation spectroscopy. Appl. Phys. Lett. 71, 231–233 (1997) CrossRefADSGoogle Scholar
  22. 22.
    S. Kim, S.J. Rhee, X. Li, J.J. Coleman, S.G. Bishop, P.B. Klein, Excitation mechanisms of multiple Er3+ sites in Er-implanted GaN. J. Electron. Mater. 27, 246–254 (1998) CrossRefADSGoogle Scholar
  23. 23.
    R. Singh, R.J. Molnar, M.S. Unlu, T.D. Moustakas, Intensity dependence of photoluminescence in GaN thin films. Appl. Phys. Lett. 64, 336–338 (1994) CrossRefADSGoogle Scholar
  24. 24.
    C.H. Chiu, F. Omnes, C. Gaquiere, P. Gibart, J.G. Swanson, The GaN yellow luminescence centre observed using optoelectronic modulation spectroscopy. J. Phys. D, Appl. Phys. 35, 609–614 (2002) CrossRefADSGoogle Scholar
  25. 25.
    M.H. Zaldivar, P. Fernandez, J. Piqueras, Influence of deformation on the luminescence of GaN epitaxial films. Semicond. Sci. Technol. 13, 900–905 (1998) CrossRefADSGoogle Scholar
  26. 26.
    H.M. Chen, Y.F. Chen, M.C. Lee, M.S. Feng, Yellow luminescence in n-type GaN epitaxial films. Phys. Rev. B 56, 6942–6946 (1997) CrossRefADSGoogle Scholar
  27. 27.
    J. Bernholc, J.C. Chervin, A. Polian, T.D. Moustakas, Towards the identification of the dominant donor in GaN. Phys. Rev. Lett. 75, 296–299 (1995) CrossRefADSGoogle Scholar
  28. 28.
    K. Wang, R.W. Martin, K.P. O’Donnell, V. Katchkanov, Selectively excited photoluminescence from Eu-implanted GaN. Appl. Phys. Lett. 87, 1121072 (2005) Google Scholar
  29. 29.
    K.P. O’Donnell, Private communication at MRS (2008) Google Scholar
  30. 30.
    W. Fuhs, I. Ulber, G. Weiser, M.S. Bresler, O.B. Gusev, Excitation and temperature quenching of Er-induced luminescence in a-Si: H (Er). Phys. Rev. B 56, 9545–9551 (1997) CrossRefADSGoogle Scholar
  31. 31.
    N. Yassievich, M.S. Bresler, O.B. Gusev, Defect-related Auger excitation of erbium ions in amorphous silicon. J. Phys. Condens. Matter. 9, 9415 (1997) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Z. Fleischman
    • 1
  • C. Munasinghe
    • 2
  • A. J. Steckl
    • 2
  • A. Wakahara
    • 3
  • J. Zavada
    • 4
  • V. Dierolf
    • 1
  1. 1.Physics DepartmentLehigh UniversityBethlehemUSA
  2. 2.Nanoelectronics LaboratoryUniversity of CincinnatiCincinnatiUSA
  3. 3.Department of Electrical and Electronic EngineeringToyohashi University of TechnologyToyohashiJapan
  4. 4.U.S. Army Research OfficeDurhamUSA

Personalised recommendations