Applied Physics B

, Volume 96, Issue 4, pp 671–682 | Cite as

Numerical investigation of the effect of signal trapping on soot measurements using LII in laminar coflow diffusion flames

Article

Abstract

Laser-induced incandescence has been rapidly developed into a powerful diagnostic technique for measurements of soot in many applications. The incandescence intensity generated by laser-heated soot particles at the measurement location suffers the signal trapping effect caused by absorption and scattering by soot particles present between the measurement location and the detector. The signal trapping effect was numerically investigated in soot measurements using both a 2D LII setup and the corresponding point LII setup at detection wavelengths of 400 and 780 nm in a laminar coflow ethylene/air flame. The radiative properties of aggregated soot particles were calculated using the Rayleigh–Debye–Gans polydisperse fractal aggregate theory. The radiative transfer equation in emitting, absorbing, and scattering media was solved using the discrete-ordinates method. The radiation intensity along an arbitrary direction was obtained using the infinitely small weight technique. The contribution of scattering to signal trapping was found to be negligible in atmospheric laminar diffusion flames. When uncorrected LII intensities are used to determine soot particle temperature and the soot volume fraction, the errors are smaller in 2D LII setup where soot particles are excited by a laser sheet. The simple Beer–Lambert exponential attenuation relationship holds in LII applications to axisymmetric flames as long as the effective extinction coefficient is adequately defined.

PACS

44.40.+a 78.20.Bh 78.90.+t 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.W. Weeks, W.W. Duley, J. Appl. Phys. 45, 4661 (1974) CrossRefADSGoogle Scholar
  2. 2.
    A.C. Eckbreth, J. Appl. Phys. 48, 4473 (1977) CrossRefADSGoogle Scholar
  3. 3.
    B. Quay, T.-W. Lee, T. Ni, R.J. Santoro, Combust. Flame 97, 384 (1994) CrossRefGoogle Scholar
  4. 4.
    R.L. Vander Wal, K.J. Weiland, Appl. Phys. B 59, 445 (1994) CrossRefADSGoogle Scholar
  5. 5.
    C.R. Shaddix, K.C. Smyth, Combust. Flame 107, 418 (1996) CrossRefGoogle Scholar
  6. 6.
    C. Crua, D.A. Kennaird, M.R. Heikal, Combust. Flame 135, 475 (2003) CrossRefGoogle Scholar
  7. 7.
    P. Witze, S. Shimpi, R. Durrett, L. Farrell, JSME Int. J. Ser. B 48, 632 (2005) CrossRefGoogle Scholar
  8. 8.
    D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44, 6773 (2005) CrossRefADSGoogle Scholar
  9. 9.
    B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Proc. Combust. Inst. 30, 1689 (2005) CrossRefGoogle Scholar
  10. 10.
    T. Lehre, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 30, 2585 (2005) CrossRefGoogle Scholar
  11. 11.
    J.E. Dec, A.O. zur Loye, D.L. Siebers, SAE Technical Paper Series SAE-910224, Society of Automotive Engineers, PA (1991) Google Scholar
  12. 12.
    D.J. Bryce, N. Ladommatos, H. Zhao, Appl. Opt. 39, 5012 (2000) CrossRefADSGoogle Scholar
  13. 13.
    L.L. McCrain, W.L. Roberts, Combust. Flame 140, 60 (2005) CrossRefGoogle Scholar
  14. 14.
    A. Boiarciuc, F. Foucher, C. Mounnaïm-Rousselle, Appl. Phys. B 83, 413 (2006) CrossRefADSGoogle Scholar
  15. 15.
    S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Proc. Combust. Inst. 31, 869 (2007) CrossRefGoogle Scholar
  16. 16.
    M.Y. Choi, K.A. Jensen, Combust. Flame 112, 485 (1998) CrossRefGoogle Scholar
  17. 17.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004) CrossRefGoogle Scholar
  18. 18.
    R.L. Vander Wal, K.A. Jensen, Appl. Opt. 37, 1607 (1998) CrossRefADSGoogle Scholar
  19. 19.
    S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Combust. Flame 120, 439 (2000) CrossRefGoogle Scholar
  20. 20.
    F. Migliorini, S. De Iuliis, F. Cignoli, G. Zizak, Appl. Opt. 45, 7706 (2006) CrossRefADSGoogle Scholar
  21. 21.
    R.A. Dobbins, C.M. Megaridis, Langmuir 3, 254 (1987) CrossRefGoogle Scholar
  22. 22.
    G.M. Faeth, Ü.Ö. Köylü, Combust. Sci. Technol. 108, 33 (1995) CrossRefGoogle Scholar
  23. 23.
    Ü.Ö. Köylü, G.M. Faeth, J. Heat Transfer 116, 971 (1994) CrossRefGoogle Scholar
  24. 24.
    C.M. Sorensen, Aerosol Sci. Technol. 35, 648 (2001) CrossRefGoogle Scholar
  25. 25.
    L.H. Chen, A. Garo, K. Cen, G. Grehan, Appl. Phys. B 87, 739 (2007) CrossRefADSGoogle Scholar
  26. 26.
    F. Liu, K.A. Thomson, G.J. Smallwood, JQSRT 109, 337 (2008) ADSGoogle Scholar
  27. 27.
    K.J. Daun, K.A. Thomson, F. Liu, IMECE2007-43611, in Proceedings of 2007 ASME International Mechanical Engineering Congress an Exposition, November 11–15, 2007, Seattle, Washington, USA Google Scholar
  28. 28.
    F. Liu, E.S. Garbett, J. Swithenbank, Int. J. Heat Mass Transfer 35, 2491 (1992) CrossRefGoogle Scholar
  29. 29.
    M.F. Modest, Radiative Heat Transfer, 2nd edn. (Academic Press, San Diego, 2003) Google Scholar
  30. 30.
    H.-S. Li, G. Flamant, J.-D. Lu, Int. Commun. Heat Mass Transfer 30, 61 (2003) CrossRefGoogle Scholar
  31. 31.
    S.R. Forrest, T.A. Witten, J. Phys. A: Math. Gen. 12, L109 (1979) CrossRefADSGoogle Scholar
  32. 32.
    T.L. Farias, Ü.Ö. Köylü, M.G. Carvalho, Appl. Opt. 35, 6560 (1996) CrossRefADSGoogle Scholar
  33. 33.
    B. Yang, Ü.Ö. Köylü, JQSRT 93, 289 (2005) ADSGoogle Scholar
  34. 34.
    K. Tian, F. Liu, K.A. Thomson, D.R. Snelling, G.J. Smallwood, D. Wang, Combust. Flame 138, 195 (2004) CrossRefGoogle Scholar
  35. 35.
    D.R. Snelling, K.A. Thomson, G.J. Smallwood, Ö.L. Gülder, Appl. Opt. 38, 2478 (1999) CrossRefADSGoogle Scholar
  36. 36.
    H. Chang, T.T. Charalampopoulos, Proc. R. Soc. Lond. A 430, 577 (1990) CrossRefADSGoogle Scholar
  37. 37.
    C.M. Megaridis, R.A. Dobbins, Combust. Sci. Tech. 66, 1 (1989) CrossRefGoogle Scholar
  38. 38.
    K.A. Thomson, D.R. Snelling, G.J. Smallwood, F. Liu, Appl. Phys. B 83, 469 (2006) CrossRefADSGoogle Scholar
  39. 39.
    J.J. Murphy, C.R. Shaddix, Combust. Flame 143, 1 (2005) CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2009

Authors and Affiliations

  1. 1.Institute for Chemical Process and Environmental TechnologyNational Research CouncilOttawaCanada

Personalised recommendations