Applied Physics B

, Volume 97, Issue 1, pp 53–60

Dispersionless saturable absorber mirrors with large modulation depths and low saturation fluences

  • M. P. Lumb
  • P. N. Stavrinou
  • E. M. Clarke
  • R. Murray
  • C. G. Leburn
  • C. Jappy
  • N. K. Metzger
  • C. T. A. Brown
  • W. Sibbett
Article

Abstract

We show that it is possible to eliminate group delay dispersion over wide bandwidths in low-finesse, resonant saturable absorber mirrors, whilst maintaining a low saturation fluence and a high modulation depth. By modelling the mirror structure we demonstrate that these properties can be produced by capping a resonant device with a single dielectric layer of carefully selected refractive index. We show that a specially capped dispersionless structure minimises the temporal broadening of femtosecond pulses reflected from the mirror. We compare this device against uncapped-resonant and anti-resonant structures. The superior performance of the capped, dispersionless device was verified experimentally by comparing resonant, anti-resonant and dispersionless quantum-dot (QD) saturable absorber mirrors incorporated into a Cr4+:forsterite laser system. We found that a minimum pulse duration of 86 fs could be achieved for the dispersionless structure at 1290 nm with an output power of 55 mW compared to 122 fs in an anti-resonant structure and several-picosecond pulses for a resonant structure.

PACS

42.60.Fc 78.67.Pt 78.67.Hc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Keller, Nature 424, 831 (2003) CrossRefADSGoogle Scholar
  2. 2.
    U. Keller, K.J. Weingarten, F.X. Kartner, D. Kopf, B. Braun, I.D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. Aus der Au, IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996) CrossRefGoogle Scholar
  3. 3.
    G.J. Spuhler, K.J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, U. Keller, Appl. Phys. B 81, 27 (2005) CrossRefADSGoogle Scholar
  4. 4.
    M.P. Lumb, D.J. Farrell, E.M. Clarke, M.J. Damzen, R. Murray, Appl. Phys. B 94, 393 (2009) CrossRefADSGoogle Scholar
  5. 5.
    F. Abeles, Ann. Phys. 3, 504 (1948) MathSciNetGoogle Scholar
  6. 6.
    O. Heavens, Optical Properties of Thin Solid Films (Butterworths, Stoneham, 1955) Google Scholar
  7. 7.
    A.A. Lagatsky, F.M. Bain, C.T.A. Brown, W. Sibbett, D.A. Livshits, G. Erbert, E.U. Rafailov, Appl. Phys. Lett. 91, 231111 (2007) CrossRefADSGoogle Scholar
  8. 8.
    E.U. Rafailov, S.J. White, A.A. Lagatsky, A. Miller, W. Sibbett, D.A. Livshits, A.E. Zhukov, V.M. Ustinov, IEEE Photonics Technol. Lett. 16, 2439 (2004) CrossRefADSGoogle Scholar
  9. 9.
    C. Scurtescu, Z.Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, Y.Y. Tsui, Appl. Phys. B 87, 671 (2007) CrossRefADSGoogle Scholar
  10. 10.
    C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller, J. Opt. Soc. Am. B 16, 46 (1999) CrossRefADSGoogle Scholar
  11. 11.
    R. Paschotta, U. Keller, Appl. Phys. B 73, 653 (2001) CrossRefADSGoogle Scholar
  12. 12.
    S. De Silvestri, P. Laporta, O. Svelto, IEEE J. Quantum Electron. 20, 533 (1984) CrossRefADSGoogle Scholar
  13. 13.
    M. Moenster, U. Griebner, W. Richter, G. Steinmeyer, IEEE J. Quantum Electron. 43, 174 (2007) CrossRefADSGoogle Scholar
  14. 14.
    M. Lumb, E. Clarke, D. Farrell, M.J. Damzen, R. Murray, Mater. Res. Soc. Symp. Proc. 1076, K09 (2008) Google Scholar
  15. 15.
    H.A. MacLeod, Thin-Film Optical Filters, 3rd edn. (Institute of Physics, Bristol, 2002) Google Scholar
  16. 16.
    S. De Silvestri, P. Laporta, O. Svelto, Opt. Lett. 9, 335 (1984) CrossRefADSGoogle Scholar
  17. 17.
    D.I. Babic, S.W. Corzine, IEEE J. Quantum Electron. 28, 514 (1992) CrossRefADSGoogle Scholar
  18. 18.
    D. Marcuse, Appl. Opt. 19, 1653 (1980) CrossRefADSGoogle Scholar
  19. 19.
    P. Laporta, V. Magni, Appl. Opt. 24, 2014 (1985) CrossRefADSGoogle Scholar
  20. 20.
    E. Sorokin, G. Tempea, T. Brabec, J. Opt. Soc. Am. B 17, 146 (2000) CrossRefADSGoogle Scholar
  21. 21.
    I.D. Jung, L.R. Brovelli, M. Kamp, U. Keller, M. Moser, Opt. Lett. 20, 1559 (1995) CrossRefADSGoogle Scholar
  22. 22.
    E.C. Le Ru, P. Howe, T.S. Jones, R. Murray, Phys. Rev. B 67, 165303 (2003) CrossRefADSGoogle Scholar
  23. 23.
    L. Zhang, T.F. Boggess, D.G. Deppe, D.L. Huffaker, O.B. Shchekin, C. Cao, Appl. Phys. Lett. 76, 1222 (2000) CrossRefADSGoogle Scholar
  24. 24.
    M. Sugawara, Self-assembled InGaAs Quantum Dots (Academic Press, San Diego, 1999) Google Scholar
  25. 25.
    D.J.H.C. Maas, A.R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Sudmeyer, U. Keller, Opt. Express 16, 18646 (2008) CrossRefADSGoogle Scholar
  26. 26.
    H.D. Sun, G.J. Valentine, R. Macaluso, S. Calvez, D. Burns, M.D. Dawson, T. Jouhti, M. Pessa, Opt. Lett. 27, 2124 (2002) CrossRefADSGoogle Scholar
  27. 27.
    V. Liverini, S. Schon, R. Grange, M. Haiml, S.C. Zeller, U. Keller, Appl. Phys. Lett. 84, 4002 (2004) CrossRefADSGoogle Scholar
  28. 28.
    Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakegawa, Opt. Lett. 22, 1006 (1997) CrossRefADSGoogle Scholar
  29. 29.
    V. Petrov, V. Shcheslavskiy, T. Mirtchev, F. Noack, T. Itatani, T. Sugaya, T. Nakagawa, Electron. Lett. 34, 559 (1998) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • M. P. Lumb
    • 1
  • P. N. Stavrinou
    • 1
  • E. M. Clarke
    • 1
  • R. Murray
    • 1
  • C. G. Leburn
    • 2
  • C. Jappy
    • 2
  • N. K. Metzger
    • 2
  • C. T. A. Brown
    • 2
  • W. Sibbett
    • 2
  1. 1.Department of Physics, Blackett LaboratoryImperial College LondonLondonUK
  2. 2.J.F. Allen Physics Research Laboratories, School of Physics and AstronomyUniversity of St. AndrewsSt. AndrewsUK

Personalised recommendations