Applied Physics B

, Volume 95, Issue 4, pp 661–666 | Cite as

Femtosecond fiber laser based methane optical clock

  • M. A. Gubin
  • A. N. Kireev
  • A. V. Konyashchenko
  • P. G. Kryukov
  • A. S. Shelkovnikov
  • A. V. Tausenev
  • D. A. Tyurikov
Article

Abstract

An optical clock based on an Er3+ fiber femtosecond laser and a two-mode He–Ne/CH4 optical frequency standard (λ=3.39 μm) is realized. Difference-frequency generation is used to down convert the 1.5-μm frequency comb of the Er3+ femtosecond laser to the 3.4-μm range. The generated infrared comb overlaps with the He–Ne/CH4 laser wavelength and does not depend on the carrier–envelope offset frequency of the 1.5-μm comb. In this way a direct phase-coherent connection between the optical frequency of the He–Ne/CH4 standard and the radio frequency pulse repetition rate of the fiber laser is established. The stability of the optical clock is measured against a commercial hydrogen maser. The measured relative instability is 1×10−12 at 1 s and for averaging times less than 50 s it is determined by the microwave standard, while for longer times a drift of the He–Ne/CH4 optical standard is dominant.

PACS

42.62.Eh 42.55.Lt 42.55.Wd 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Audoin, B. Guinot, The Measurement of Time: Time, Frequency and the Atomic Clock (Cambridge University Press, Cambridge, 2001) Google Scholar
  2. 2.
    I. Ryuichi, I. Atsutoshi, T. Hiroshi, K. Hiromitsu, K. Moritaka, N. Junichi, K. Yasuhiro, K. Tetsuro, M. Morito, K. Shinobu, K. Kensuke, M. Shigeru, in Measuring the Future, Proc. Fifth IVS General Meet., ed. by A. Finkelstein, D. Behrend (Nauka, St. Petersburg, 2008), pp. 400–401 Google Scholar
  3. 3.
    D. Chambon, S. Bize, M. Lours, A. Clairon, G. Santarelli, A. Luiten, M. Tobar, Rev. Sci. Instrum. 76, 094704 (2005) CrossRefADSGoogle Scholar
  4. 4.
    S. Chang, A.G. Mann, A.N. Luiten, Electron. Lett. 36, 480 (2000) CrossRefGoogle Scholar
  5. 5.
    A.D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S.M. Foreman, M.M. Boyd, S. Blatt, J. Ye, Opt. Lett. 32, 641 (2007) CrossRefADSGoogle Scholar
  6. 6.
    M.A. Gubin, A.S. Shelkovnikov, E.V. Kovalchuk, D.D. Krylova, E.A. Petrukhin, D.A. Tyurikov, in Proc. 1999 Joint Meet. EFTF/IEEE IFCS, Besancon, France, 13–16 April 1999, p. 710 Google Scholar
  7. 7.
    J. Ye, H. Schnatz, L.W. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1041 (2003) CrossRefGoogle Scholar
  8. 8.
    J. Ye, S.T. Cundiff, Femtosecond Optical Frequency Comb Technology: Principle, Operation and Application (Springer, New York, 2005) CrossRefGoogle Scholar
  9. 9.
    T. Udem, R. Holzwarth, T.W. Hänsch, Nature 416, 233 (2002) CrossRefADSGoogle Scholar
  10. 10.
    D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Science 288, 635 (2000) CrossRefADSGoogle Scholar
  11. 11.
    J. Ranka, R. Windeler, A. Stentz, Opt. Lett. 25, 25 (2000) CrossRefADSGoogle Scholar
  12. 12.
    L. Matos, D. Kleppner, O. Kuzucu, T.R. Schibili, J. Kim, E.P. Ippen, F. Kaertner, Opt. Lett. 29, 1683 (2004) CrossRefADSGoogle Scholar
  13. 13.
    M. Zimmerman, C. Gohle, R. Holzwarth, T. Udem, T.W. Hänsch, Opt. Lett. 29, 310 (2004) CrossRefADSGoogle Scholar
  14. 14.
    A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, C. Chardonnet, Appl. Phys. B 78, 25 (2004) CrossRefADSGoogle Scholar
  15. 15.
    S. Foreman, A. Marian, J. Ye, E. Petrukhin, M. Gubin, O. Mücke, F. Wong, E. Ippen, F. Kaertner, Opt. Lett. 30, 570 (2005) CrossRefADSGoogle Scholar
  16. 16.
    J. Rauschenberger, T.M. Fortier, D.J. Jones, J. Ye, S.T. Cundiff, Opt. Express 10, 1404 (2002) ADSGoogle Scholar
  17. 17.
    F. Tauser, A. Leitenstorfer, W. Zinth, Opt. Express 11, 594 (2003) ADSCrossRefGoogle Scholar
  18. 18.
    F. Adler, K. Moutzouris, A. Leitenstorfer, H. Schnatz, B. Lipphardt, G. Grosche, F. Tauser, Opt. Express 12, 5872 (2004) CrossRefADSGoogle Scholar
  19. 19.
    T.R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, M.E. Fermann, Opt. Lett. 29, 2467 (2004) CrossRefADSGoogle Scholar
  20. 20.
    J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, J.W. Nicholson, Appl. Phys. B 86, 49 (2007) CrossRefADSGoogle Scholar
  21. 21.
    J.J. McFerran, W.C. Swann, B.R. Washburn, N.R. Newbury, Appl. Phys. B 86, 219 (2007) CrossRefADSGoogle Scholar
  22. 22.
    A.V. Tausenev, P.G. Kryukov, Quantum Electron. 34, 106 (2004) CrossRefADSGoogle Scholar
  23. 23.
    A.V. Tausenev, P.G. Kryukov, M.M. Bubnov, M.E. Likhachev, E.Yu. Romanova, M.V. Yashkov, V.F. Khopin, M.Yu. Salgansky, Quantum Electron. 35, 581 (2005) CrossRefADSGoogle Scholar
  24. 24.
    M.A. Gubin, E.D. Protsenko, Quantum Electron. 27, 1048 (1997) CrossRefADSGoogle Scholar
  25. 25.
    S.T. Dawkins, J.J. McFerran, A.N. Luiten, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 918 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • M. A. Gubin
    • 1
  • A. N. Kireev
    • 1
  • A. V. Konyashchenko
    • 1
    • 3
  • P. G. Kryukov
    • 1
    • 2
  • A. S. Shelkovnikov
    • 1
  • A. V. Tausenev
    • 1
    • 2
    • 3
  • D. A. Tyurikov
    • 1
  1. 1.P.N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Fiber Optics Research CenterRussian Academy of SciencesMoscowRussia
  3. 3.Avesta-Project Ltd.Troitsk, Moscow oblastRussia

Personalised recommendations