Applied Physics B

, Volume 96, Issue 2–3, pp 345–353 | Cite as

Fiber-modes and fiber-anisotropy characterization using low-coherence interferometry

  • Y. Z. Ma
  • Y. Sych
  • G. Onishchukov
  • S. Ramachandran
  • U. Peschel
  • B. Schmauss
  • G. Leuchs
Open Access
Article

Abstract

An optical low-coherence interferometry technique has been used to simultaneously resolve the mode profile and to measure the intermodal dispersion of guided modes of a few-mode fiber. Measurements are performed using short samples of fiber (about 50 cm). There is no need for a complex mode-conversion technique to reach a high interference visibility. Four LP mode groups of the few-mode fiber are resolved. Experimental results and numerical simulations show that the ellipticity of the fiber core leads to a distinct splitting of the degenerate high-order modes in group index. For the first time, to the best of our knowledge, it has been demonstrated that degenerate LP11 modes are much more sensitive to core shape variations than the fundamental modes and that intermodal dispersion of high-order degenerate modes can be used for characterizing the anisotropy of an optical waveguide.

PACS

42.25.Hz 42.81.Cn 42.81.Gs 

References

  1. 1.
    C.D. Poole, J.M. Wiesenfeld, D.J. DiGiovanni, A.M. Vengsarkar, Optical fiber-based dispersion compensation using higher order modes near cutoff. J. Lightw. Technol. 12, 1746–1758 (1994) CrossRefADSGoogle Scholar
  2. 2.
    Y. Painchaud, P. LeBel, M.A. Duguay, R.J. Black, Time-resolved identification of modes and measurement of intermodal dispersion in optical fibers. Appl. Opt. 31, 2005–2010 (1992) CrossRefADSGoogle Scholar
  3. 3.
    S. Ramachandran, Dispersion-tailored few-mode fibers: A versatile platform for in-fiber photonic devices. J. Lightw. Technol. 23, 3426–3443 (2005) CrossRefADSGoogle Scholar
  4. 4.
    Y. Painchaud, M.A. Duguay, F. Ouellette, Interferometric time measurements of intermodal dispersion in optical fibers by using a CCD photodetector array. Opt. Lett. 17, 1423–1425 (1992) CrossRefADSGoogle Scholar
  5. 5.
    G. Volpe, D. Petrov, Generation of cylindrical vector beams with few-mode fibers exited by Laguerre-Gaussian beams. Opt. Commun. 237, 89–95 (2004) CrossRefADSGoogle Scholar
  6. 6.
    T. Grosjean, A. Sabac, D. Courjon, A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations. Opt. Commun. 252, 12–21 (2005) CrossRefADSGoogle Scholar
  7. 7.
    A. Witkowska, S.G. Leon-Saval, A. Pham, T.A. Birks, All-fiber LP11 mode convertors. Opt. Lett. 33, 306–308 (2008) CrossRefADSGoogle Scholar
  8. 8.
    P. Hamel, Y. Jaouën, R. Gabet, S. Ramachandran, Optical low-coherence reflectometry for complete chromatic dispersion characterization of few-mode fibers. Opt. Lett. 32, 1029–1031 (2007) CrossRefADSGoogle Scholar
  9. 9.
    X.D. Cao, D.D. Meyerhofer, Frequency-domain interferometer for measurements of the polarization mode dispersion in single-mode optical fibers. Opt. Lett. 19, 1837–1839 (1994) CrossRefADSGoogle Scholar
  10. 10.
    J.M. Dudley, S.G. Murdoch, Intermodal dispersion and polarization mode dispersion measurements in optical fibers using a self-modelocked Ti:sapphire laser. Opt. Fiber Technol. 2, 80–84 (1996) CrossRefADSGoogle Scholar
  11. 11.
    C. Dorrer, S. Ramachandran, Self-referencing dispersion characterization of multimode structures using direct instantaneous frequency measurement. IEEE Photonics Technol. Lett. 16, 1700–1702 (2004) CrossRefADSGoogle Scholar
  12. 12.
    T.-J. Ahn, Y. Park, D.J. Moss, S. Ramachandran, J. Azaña, Frequency-domain modal delay measurement for higher-order mode fiber based on stretched pulse interference. Opt. Lett. 33, 19–21 (2008) CrossRefADSGoogle Scholar
  13. 13.
    J.W. Nicholson, A.D. Yablon, S. Ramachandran, S. Ghalmi, Spatially and spectrally resolved imaging of modal content in large-mode-area fibers. Opt. Express 16, 7233–7243 (2008) CrossRefADSGoogle Scholar
  14. 14.
    S. Golowich, S. Ramachandran, Impact of fiber design on polarization dependence in microbend gratings. Opt. Express 13, 6870–6877 (2005) CrossRefADSGoogle Scholar
  15. 15.
    A.W. Snyder, J.D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983) Google Scholar
  16. 16.
    D. Gloge, Weakly guiding fibers. Appl. Opt. 10, 2252–2258 (1971) CrossRefADSGoogle Scholar
  17. 17.
    D. Gloge, Dispersion in weakly guiding fibers. Appl. Opt. 10, 2442–2445 (1971) CrossRefADSGoogle Scholar
  18. 18.
    S. Ramachandran, S. Ghalmi, J.W. Nicholson, M.F. Yan, P. Wisk, E. Monberg, F.V. Dimarcello, Anomalous dispersion in a solid, silica-based fiber. Opt. Lett. 31, 2532–2534 (2006) CrossRefADSGoogle Scholar
  19. 19.
    S. Ramachandran, S. Golowich, M.F. Yan, E. Monberg, F.V. Dimarcello, J. Fleming, S. Ghalmi, P. Wisk, Lifting polarization degeneracy of modes by fiber design: a platform for polarization-insensitive microbend fiber gratings. Opt. Lett. 30, 2864–2866 (2005) CrossRefADSGoogle Scholar
  20. 20.
    G. Lai, T. Yatagai, Generalized phase-shifting interferometry. J. Opt. Soc. Am. A 8, 822–827 (1991) CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Y. Z. Ma
    • 1
  • Y. Sych
    • 3
    • 4
  • G. Onishchukov
    • 2
    • 3
  • S. Ramachandran
    • 5
  • U. Peschel
    • 1
    • 2
    • 3
  • B. Schmauss
    • 3
    • 4
  • G. Leuchs
    • 1
    • 2
    • 3
  1. 1.Institute of Optics, Information and PhotonicsUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Max Planck Institute for the Science of LightErlangenGermany
  3. 3.Erlangen Graduate School in Advanced Optical Technologies (SAOT)ErlangenGermany
  4. 4.Chair for Microwave EngineeringUniversity of Erlangen-NurembergErlangenGermany
  5. 5.Department of Photonics EngineeringTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations