Advertisement

Applied Physics B

, Volume 96, Issue 2–3, pp 453–457 | Cite as

Interference microscopy of femtosecond laser written waveguides in phosphate glass

  • D. Esser
  • D. Mahlmann
  • D. Wortmann
  • J. Gottmann
Article

Abstract

By focusing fs-laser radiation in the volume of a transparent material the refractive index can be changed locally, leading to 3-dimensional waveguiding structures. Waveguides are written in phosphate glass (IOG from Schott) at a depth of 100 μm below the surface. The pulse energy and the scan velocity are varied. For the first time the optical path difference caused by the waveguides and therefore the refractive index distribution of the waveguides and their cross sections are determined using interference microscopy. The optical path difference measured in the written structures and their cross sections is analyzed by a phase-shift algorithm. Thus, the refractive index distribution both along a line perpendicular to the waveguide and in the plane of a cross section is determined. The results are visualized as 2-dimensional graphics. Several regions of opposite sign of the refractive index change are observed in the cross sections of waveguides generated by femtosecond laser pulses. The number and the size of these regions are increasing with increasing pulse energy and decreasing scan velocity.

PACS

42.25.Hz 42.70.Ce 42.82.Et 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, Appl. Phys. Lett. 71, 23 (1997) CrossRefGoogle Scholar
  2. 2.
    J.W. Chan, T.R. Huser, S.H. Risbud, J.S. Hayden, D.M. Krol, Appl. Phys. Lett. 82, 15 (2003) Google Scholar
  3. 3.
    L. Tong, R.R. Gattass, I. Maxwell, J.B. Ashcom, E. Mazur, Opt. Commun. 259, 626 (2006) CrossRefADSGoogle Scholar
  4. 4.
    R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H.T. Bookey, R.R. Thomson, N.D. Psaila, A.K. Kar, Appl. Phys. Lett. 90, 241107 (2007) CrossRefADSGoogle Scholar
  5. 5.
    N.D. Psaila, R.R. Thomson, H.T. Bookley, A.K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, S. Shen, Appl. Phys. Lett. 90, 131102 (2007) CrossRefADSGoogle Scholar
  6. 6.
    D. Esser, D. Wortmann, J. Gottmann, Proc. SPIE 7205, 720510 (2009). doi: 10.1117/12.808736 CrossRefGoogle Scholar
  7. 7.
    C.B. Schaffer, A. Brodeur, E. Mazur, Meas. Sci. Technol. 12, 1784 (2001) CrossRefADSGoogle Scholar
  8. 8.
    W. Watanabe, D. Kuroda, K. Ioth, Opt. Express 10, 19 (2002) Google Scholar
  9. 9.
    G.D. Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, P. Laporta, Opt. Express 15, 6 (2007) Google Scholar
  10. 10.
    J. Gottmann, D. Wortmann, I. Vasilief, L. Moiseev, D. Ganser, Appl. Surf. Sci. 254, 1105 (2007) CrossRefADSGoogle Scholar
  11. 11.
    S.M. Eaton, H. Zhang, P.R. Herman, F. Yoshino, L. Shah, J. Bovatesk, A.Y. Arai, Opt. Express 13, 12 (2005) CrossRefGoogle Scholar
  12. 12.
    S. Guizard, P. Martin, P. D’Oliveira, P. Meynadier, J. Phys.: Condens. Matter 8, 1281 (1996) CrossRefADSGoogle Scholar
  13. 13.
    D. Wortmann, M. Ramme, J. Gottmann, Opt. Express 15, 16 (2007) CrossRefGoogle Scholar
  14. 14.
    J. Grehn, Leitz Mitt. Wiss. Techn. 1, 2 (1959) Google Scholar
  15. 15.
    J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, K. Merkel, Appl. Opt. 22, 21 (1983) CrossRefGoogle Scholar
  16. 16.
    K. Creath, Proc. SPIE 680, 19 (1986) ADSGoogle Scholar
  17. 17.
    J.H. Bruning, D.R. Herriott, J.E. Gallagher, D.P. Rosenfeld, A.D. White, D.J. Brangaccio, Appl. Opt. 13, 11 (1974) CrossRefGoogle Scholar
  18. 18.
    M. Sakakura, M. Terazima, Phys. Rev. B 71, 2 (2005) CrossRefGoogle Scholar
  19. 19.
    A. Mermillod-Blondin, I.M. Burakov, Y.P. Meshcheryakov, N.M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, R. Stoian, Phys. Rev. B 77, 10 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • D. Esser
    • 1
  • D. Mahlmann
    • 2
  • D. Wortmann
    • 1
  • J. Gottmann
    • 1
  1. 1.Lehrstuhl für LasertechnikRWTH Aachen UniversityAachenGermany
  2. 2.Lehrstuhl für Technologie optischer SystemeRWTH Aachen UniversityAachenGermany

Personalised recommendations