Applied Physics B

, Volume 96, Issue 2–3, pp 415–422 | Cite as

Theoretical and experimental investigations of nanosecond 177.3 nm deep-ultraviolet light by second harmonic generation in KBBF

  • F. Yang
  • Z. Wang
  • Y. Zhou
  • F. Li
  • J. Xu
  • Y. Xu
  • X. Cheng
  • Y. Lu
  • Y. Bo
  • Q. Peng
  • D. Cui
  • X. Zhang
  • X. Wang
  • Y. Zhu
  • Z. Xu
Article

Abstract

We have presented theoretical and experimental investigations of nanosecond (ns) deep-ultraviolet (DUV) 177.3 nm radiation by means of second harmonic generation (SHG) from a frequency-tripled Nd:YAG laser (355 nm, 49 ns and 10 kHz) in KBe2BO3F2 (KBBF) nonlinear crystal for the first time. A DUV KBBF-SHG numerical model, accounting for linear absorption, pump depletion, beam spatial birefringent walk-off and diffraction, is performed in the Gaussian approximation of spatial and temporal profiles. In the experiment, a maximum average output power of 14.1 mW at 177.3 nm was obtained. The dependence of 177.3 nm output power on the 355 nm pump power was simulated. The calculated results are in good agreement with the measured data. We used the model further to investigate the optical conversion efficiency, pulse width, beam spatial intensity profile and beam quality factor of the generated 177.3 nm light, in particular the effect of beam birefringent walk-off.

PACS

42.65.Ky 42.70.Mp 42.55.Rz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.T. Zhang, G.D. Liu, L. Zhao, H.Y. Liu, J.Q. Meng, X.L. Dong, W. Lu, J.S. Wen, Z.J. Xu, G.D. Gu, T. Sasagawa, G.L. Wang, Y. Zhu, H.B. Zhang, Y. Zhou, X.Y. Wang, Z.X. Zhao, C.T. Chen, Z.Y. Xu, X.J. Zhou, Identification of a new form of electron coupling in the Bi2Sr2CaCu2O8 superconductor by laser-based angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 100, 107002 (2008) CrossRefADSGoogle Scholar
  2. 2.
    T. Kiss, F. Kanetaka, T. Yokoya, T. Shimojima, K. Kanai, S. Shin, Y. Onuki, T. Togashi, C.Q. Zhang, C.T. Chen, S. Watanabe, Photoemission spectroscopic evidence of gap anisotropy in an f-electron superconductor. Phys. Rev. Lett. 94, 057001 (2005) CrossRefADSGoogle Scholar
  3. 3.
    Y. Zhou, G.L. Wang, C.M. Li, Q.J. Peng, Z.Y. Xu, X.Y. Wang, Y. Zhu, C.T. Chen, G.D. Liu, X.L. Dong, X.J. Zhou, Sixth harmonic of a Nd:YVO4 laser generation in KBBF for ARPES. Chin. Phys. Lett. 25, 963–965 (2008) CrossRefADSGoogle Scholar
  4. 4.
    C.T. Chen, Z.Y. Xu, D.Q. Deng, J. Zhang, G.K.L. Wong, The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal. Appl. Phys. Lett. 68, 2930–2932 (1996) CrossRefADSGoogle Scholar
  5. 5.
    D.Y. Tang, Y.N. Xia, B.C. Wu, C.T. Chen, Growth of a new UV nonlinear optical crystal: KBe2BO3F2. J. Cryst. Growth 222, 125–129 (2001) CrossRefADSGoogle Scholar
  6. 6.
    B.C. Wu, D.Y. Tang, N. Ye, C.T. Chen, Linear and nonlinear optical properties of the KBe2BO3F2 crystal. Opt. Mater. 5, 105–109 (1996) CrossRefGoogle Scholar
  7. 7.
    C.T. Chen, J.H. Lu, T. Togashi, T. Suganuma, T. Sekikama, S. Watanabe, Z.Y. Xu, J.Y. Wang, Second-harmonic generation from a KBe2BO3F2 crystal in the deep ultraviolet. Opt. Lett. 27, 637–639 (2002) CrossRefADSGoogle Scholar
  8. 8.
    T. Togashi, T. Kanai, T. Sekikawa, S. Watanabe, C.T. Chen, C.Q. Zhang, Z.Y. Xu, J.Y. Wang, Generation of vacuum-ultraviolet light by an optically contacted, prism-coupled KBe2BO3F2 crystal. Opt. Lett. 28, 254–256 (2003) CrossRefADSGoogle Scholar
  9. 9.
    G.L. Wang, X.Y. Wang, Y. Zhou, Y.H. Chen, C.M. Li, Y. Zhu, Z.Y. Xu, C.T. Chen, 12.95 mW sixth harmonic generation with KBe2BO3F2 crystal. Appl. Phys. B 91, 95–97 (2008) CrossRefADSGoogle Scholar
  10. 10.
    H.B. Zhang, G.L. Wang, L. Guo, A.C. Geng, Y. Bo, D.F. Cui, Z.Y. Xu, R.N. Li, Y. Zhu, X.Y. Wang, C.T. Chen, 175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal. Appl. Phys. B 93, 323–326 (2008) CrossRefADSGoogle Scholar
  11. 11.
    C.T. Chen, T. Kanai, X.Y. Wang, Y. Zhu, S. Watanabe, High-average-power light source below 200 nm from a KBe2BO3F2 prism-coupled device. Opt. Lett. 33, 282–284 (2008) CrossRefADSGoogle Scholar
  12. 12.
    T. Kanai, T. Kanda, T. Sekikawa, S. Watanabe, T. Togashi, C.T. Chen, C.Q. Zhang, Z.Y. Xu, Generation of vacuum-ultraviolet light below 160 nm in a KBBF crystal by the fifth harmonic of a single-mode Ti:sapphire laser. J. Opt. Soc. Am. B 21, 370–375 (2004) CrossRefADSGoogle Scholar
  13. 13.
    G.L. Wang, X.Y. Wang, Y. Zhou, C.M. Li, Y. Zhu, Z.Y. Xu, C.T. Chen, High-efficiency frequency conversion in deep ultraviolet with a KBe2BO3F2 prism-coupled device. Appl. Opt. 47, 486–488 (2008) CrossRefADSGoogle Scholar
  14. 14.
    G. Arisholm, General numerical methods for simulating second-order nonlinear interactions in birefringent media. J. Opt. Soc. Am. B 14, 2543–2549 (1997) CrossRefADSGoogle Scholar
  15. 15.
    S.C. Sheng, A.E. Siegman, Nonlinear-optical calculations using fast-transform methods: second-harmonic generation with depletion and diffraction. Phys. Rev. A 21, 599–606 (1980) CrossRefADSGoogle Scholar
  16. 16.
    R. Urschel, A. Borsutzky, R. Wallenstein, Numerical analysis of the spatial behaviour of nanosecond optical parametric oscillators of beta-barium borate. Appl. Phys. B 70, 203–210 (2000) CrossRefADSGoogle Scholar
  17. 17.
    S. Carrasco, B.E.A. Saleh, M.C. Teich, J.T. Fourkas, Second- and third-harmonic generation with vector Gaussian beams. J. Opt. Soc. Am. B 23, 2134–2141 (2006) CrossRefADSGoogle Scholar
  18. 18.
    C.T. Chen, G.L. Wang, X.Y. Wang, Y. Zhu, Z.Y. Xu, T. Kanai, S. Watanabe, Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal. IEEE J. Quantum Electron. 44, 617–621 (2008) CrossRefADSGoogle Scholar
  19. 19.
    W. Walukiewicz, L. Lagowski, L. Jastrzebski, M. Lichtensreiger, H.C. Gatps, Electron mobility and free-carrier absorption in GaAs: determination of the compensation ratio. J. Appl. Phys. 50, 899–908 (1979) CrossRefADSGoogle Scholar
  20. 20.
    P. Pliszka, P.P. Banerjee, Nonlinear transverse effects in second-harmonic generation. J. Opt. Soc. Am. B 10, 1810–1819 (1993) CrossRefADSGoogle Scholar
  21. 21.
    G.D. Boyd, D.A. Kleinman, Parametric interactions of focused Gaussian light beams. J. Appl. Phys. 39, 3897–3641 (1968) CrossRefGoogle Scholar
  22. 22.
    R.W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003) Google Scholar
  23. 23.
    A.E. Siegman, New developments in laser resonators, in Optical Resonators, ed by D.A. Holmes, Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1224, pp. 2–14 (1990) Google Scholar
  24. 24.
    A.V. Smith, W.J. Alford, T.D. Raymond, M.S. Bowers, Comparison of a numerical model with measures performance of a seeded, nanosecond KTP optical parametric oscillator. J. Opt. Soc. Am. B 12, 2253–2267 (1995) CrossRefADSGoogle Scholar
  25. 25.
    A.V. Smith, M.S. Bowers, Phase distortions in sum- and difference-frequency mixing in crystals. J. Opt. Soc. Am. B 12, 49–57 (1995) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • F. Yang
    • 1
    • 4
  • Z. Wang
    • 2
  • Y. Zhou
    • 1
    • 4
  • F. Li
    • 1
    • 4
  • J. Xu
    • 2
  • Y. Xu
    • 1
    • 4
  • X. Cheng
    • 1
    • 4
  • Y. Lu
    • 1
    • 4
  • Y. Bo
    • 2
  • Q. Peng
    • 2
  • D. Cui
    • 2
  • X. Zhang
    • 3
    • 4
  • X. Wang
    • 3
  • Y. Zhu
    • 3
  • Z. Xu
    • 1
    • 2
  1. 1.Laboratory of Optical Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Research Center for Laser Physics & Technique, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  3. 3.Beijing Center for Crystal R&D, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  4. 4.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations