Applied Physics B

, 96:325 | Cite as

Near-field optical power transmission of dipole nano-antennas

Article

Abstract

Nano-antennas in functional plasmonic applications require high near-field optical power transmission. In this study, a model is developed to compute the near-field optical power transmission in the vicinity of a nano-antenna. To increase the near-field optical power transmission from a nano-antenna, a tightly focused beam of light is utilized to illuminate a metallic nano-antenna. The modeling and simulation of these structures is performed using 3-D finite element method based full-wave solutions of Maxwell’s equations. Using the optical power transmission model, the interaction of a focused beam of light with plasmonic nano-antennas is investigated. In addition, the tightly focused beam of light is passed through a band-pass filter to identify the effect of various regions of the angular spectrum to the near-field radiation of a dipole nano-antenna. An extensive parametric study is performed to quantify the effects of various parameters on the transmission efficiency of dipole nano-antennas, including length, thickness, width, and the composition of the antenna, as well as the wavelength and half-beam angle of incident light. An optimal dipole nano-antenna geometry is identified based on the parameter studies in this work. In addition, the results of this study show the interaction of the optimized dipole nano-antenna with a magnetic recording medium when it is illuminated with a focused beam of light.

PACS

73.20.Mf 85.70.Sq 68.37.Uv 84.40.Ba 42.79.Vb 

References

  1. 1.
    A. Hartschuh, E.J. Sánchez, X.S. Xie, L. Novotny, Phys. Rev. Lett. 90, 095503 (2003) CrossRefADSGoogle Scholar
  2. 2.
    K. Sendur, W. Challener, C. Peng, J. Appl. Phys. 96, 2743–2752 (2004) CrossRefADSGoogle Scholar
  3. 3.
    L. Wang, X. Xu, J. Microsc. 229, 483–489 (2008) CrossRefMathSciNetGoogle Scholar
  4. 4.
    B. Liedberg, C. Nylander, I. Lundstroem, Sens. Actuators 4, 299–304 (1983) CrossRefGoogle Scholar
  5. 5.
    R.D. Grober, R.J. Schoelkopf, D.E. Prober, Appl. Phys. Lett. 70, 1354–1356 (1997) CrossRefADSGoogle Scholar
  6. 6.
    K. Sendur, W. Challener, J. Microsc. 210, 279–283 (2003) CrossRefMathSciNetGoogle Scholar
  7. 7.
    E.X. Jin, X. Xu, J. Comput. Theor. Nanosci. 5, 214–218 (2008) Google Scholar
  8. 8.
    S. Wang, Appl. Phys. Lett. 28, 303 (1976) CrossRefADSGoogle Scholar
  9. 9.
    V. Daneu, D. Sokoloff, A. Sanchez, A. Javan, Appl. Phys. Lett. 15, 398 (1969) CrossRefADSGoogle Scholar
  10. 10.
    A. Sanchez, C.F. Davis Jr., K.C. Liu, A. Javan, J. Appl. Phys. 49, 5270 (1978) CrossRefADSGoogle Scholar
  11. 11.
    K.B. Crozier, A. Sundaramurthy, G.S. Kino, C.F. Quate, J. Appl. Phys. 94, 4632 (2003) CrossRefADSGoogle Scholar
  12. 12.
    D.P. Fromm, A. Sundaramurthy, P.J. Schuck, G. Kino, W.E. Moerner, Nano Lett. 4, 957 (2004) CrossRefADSGoogle Scholar
  13. 13.
    P. Muhlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Science 308, 1607–1609 (2005) CrossRefADSGoogle Scholar
  14. 14.
    F. Jackel, A.A. Kinkhabwala, W.E. Moerner, Chem. Phys. Lett. 446, 339–343 (2007) CrossRefADSGoogle Scholar
  15. 15.
    L. Novotny, Phys. Rev. Lett. 98, 266802 (2007) CrossRefADSGoogle Scholar
  16. 16.
    H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988) Google Scholar
  17. 17.
    J.J. Burke, G.I. Stegeman, T. Tamir, Phys. Rev. B 33, 5186–5201 (1986) CrossRefADSGoogle Scholar
  18. 18.
    H. Raether, Physics of Thin Films (Academic Press, New York, 1977), pp. 145–261 Google Scholar
  19. 19.
    T. Matsumoto, T. Shimano, H. Saga, H. Sukeda, J. Appl. Phys. 95, 3901–3906 (2004) CrossRefADSGoogle Scholar
  20. 20.
    T. Matsumoto, Y. Anzai, T. Shintani, K. Nakamura, T. Nishida, Opt. Lett. 31, 259–261 (2006) CrossRefADSGoogle Scholar
  21. 21.
    A. Itagi, D. Stancil, J. Bain, T. Schlesinger, Appl. Phys. Lett. 83, 4474 (2003) CrossRefADSGoogle Scholar
  22. 22.
    K. Sendur, C. Peng, W. Challener, Phys. Rev. Lett. 94, 043901 (2005) CrossRefADSGoogle Scholar
  23. 23.
    L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006), Chap. 3 Google Scholar
  24. 24.
    E. Wolf, Proc. R. Soc. Lond. Ser. A 253, 349–357 (1959) MATHCrossRefADSGoogle Scholar
  25. 25.
    B. Richards, E. Wolf, Proc. R. Soc. Lond. Ser. A 253, 358–379 (1959) MATHCrossRefADSGoogle Scholar
  26. 26.
    J.M. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 2000) Google Scholar
  27. 27.
    R.M. Stöckle, N. Schaller, V. Deckert, C. Fokas, R. Zenobi, Opt. Lett. 20, 970 (1995) CrossRefGoogle Scholar
  28. 28.
    K. Sendur, W. Challener, O. Mryasov, Opt. Express 16, 2874–2886 (2008) CrossRefADSGoogle Scholar
  29. 29.
    K.S. Youngworth, T.G. Brown, Opt. Express 7, 77–87 (2000) ADSCrossRefGoogle Scholar
  30. 30.
    D.K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, New York, 1983) Google Scholar
  31. 31.
    C.A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989) Google Scholar
  32. 32.
    I. Ichimura, S. Hayashi, G.S. Kino, Appl. Opt. 36, 4339–4348 (1997) CrossRefADSGoogle Scholar
  33. 33.
    K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668–677 (2003) CrossRefGoogle Scholar
  34. 34.
    J.P. Kottmann, O.J.F. Martin, Appl. Phys. B 73, 299–304 (2001) CrossRefADSGoogle Scholar
  35. 35.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey

Personalised recommendations