Applied Physics B

, Volume 95, Issue 3, pp 399–405

Photorefraction in LiNbO3:Fe crystals with femtosecond pulses at 532 nm

Article

Abstract

Photorefractive index gratings are written into iron-doped lithium niobate crystals using femtosecond laser pulses and cw light, both having a wavelength of 532 nm. The saturation value of the refractive index changes in as-grown samples is found to decrease with increasing peak pulse intensity. Furthermore, in oxidized crystals, writing with femtosecond pulses is much faster than with cw light and retains about the same writing speed than in as-grown crystals. We propose a charge transport model that addresses the special case of recording with high intensity femtosecond pulses.

PACS

77.84.Dy 42.65.Hw 72.20.Jv 42.70.Ln 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Günter, J.-P. Huignard (eds.), Photorefractive Materials and Their Applications, vol. 3 (Springer, New York, 2007) Google Scholar
  2. 2.
    A. Ashkin, G.D. Boyd, J.M. Dziedzic, R.G. Smith, A.A. Ballman, J.J. Levinstein, K. Nassau, Appl. Phys. Lett. 9, 72 (1966) CrossRefADSGoogle Scholar
  3. 3.
    L. Arizmendi, Phys. Stat. Sol. (a) 201, 253 (2004) CrossRefADSGoogle Scholar
  4. 4.
    K. Buse, Appl. Phys. B 64, 273 (1997) CrossRefADSGoogle Scholar
  5. 5.
    K. Buse, Appl. Phys. B 64, 391 (1997) CrossRefADSGoogle Scholar
  6. 6.
    H.-T. Hsieh, D. Psaltis, O. Beyer, D. Maxein, C. von Korff Schmising, K. Buse, B. Sturman, Opt. Lett. 30, 2233 (2005) CrossRefADSGoogle Scholar
  7. 7.
    O. Beyer, I. Breunig, F. Kalkum, K. Buse, Appl. Phys. Lett. 88, 051120 (2006) CrossRefADSGoogle Scholar
  8. 8.
    K. Oba, P.-C. Sun, Y. Fainman, Opt. Lett. 23, 915 (1998) CrossRefADSGoogle Scholar
  9. 9.
    S. Juodkazis, V. Mizeikis, M. Sudzius, H. Misawa, K. Kitamura, S. Takekawa, E.G. Gamaly, W.Z. Krolikowski, A.V. Rode, Appl. Phys. A 93, 129 (2008) CrossRefADSGoogle Scholar
  10. 10.
    A.A. Maznev, T.F. Crimmins, K.A. Nelson, Opt. Lett. 23, 1378 (1998) CrossRefADSGoogle Scholar
  11. 11.
    H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969) Google Scholar
  12. 12.
    G. Peterson, A. Glass, T. Negran, Appl. Phys. Lett. 19, 130 (1971) CrossRefADSGoogle Scholar
  13. 13.
    H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber, Appl. Phys. 12, 355 (1977) CrossRefADSGoogle Scholar
  14. 14.
    J. Bückers, D. Maxein, D. Haertle, K. Buse, J. Opt. Soc. Am. B 26(5) (2009, to be published) Google Scholar
  15. 15.
    N.V. Kukhtarev, Sov. Tech. Phys. Lett. 2, 438 (1976) Google Scholar
  16. 16.
    E. Krätzig, R. Orlowski, Ferroelectrics 27, 241 (1980) Google Scholar
  17. 17.
    F. Jermann, J. Otten, J. Opt. Soc. Am. B 10, 2085 (1993) CrossRefADSGoogle Scholar
  18. 18.
    M. Simon, S. Wevering, K. Buse, E. Krätzig, J. Phys. D 30, 144 (1997) CrossRefADSGoogle Scholar
  19. 19.
    O. Beyer, D. Maxein, K. Buse, B. Sturman, H. Hsieh, D. Psaltis, Opt. Lett. 30, 1366 (2005) CrossRefADSGoogle Scholar
  20. 20.
    G. Montemezzani, P. Dittrich, P. Günter, in Photorefractive Materials and Their Applications 1—Basic Effects (Springer, New York, 2006), p. 203, Chap. 7 CrossRefGoogle Scholar
  21. 21.
    E. Krätzig, H. Kurz, J. Mod. Opt. 24, 475 (1977) CrossRefADSGoogle Scholar
  22. 22.
    E. Krätzig, H. Kurz, J. Electrochem. Soc. 124, 131 (1977) CrossRefGoogle Scholar
  23. 23.
    P. Herth, D. Schaniel, T. Woike, T. Granzow, M. Imlau, E. Krätzig, Phys. Rev. B 71, 125128 (2005) CrossRefADSGoogle Scholar
  24. 24.
    O. Beyer, D. Maxein, T. Woike, K. Buse, Appl. Phys. B 83, 527 (2006) CrossRefADSGoogle Scholar
  25. 25.
    P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, E. Krätzig, Phys. Rev. Lett. 95, 067404 (2005) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of BonnBonnGermany

Personalised recommendations