Applied Physics B

, Volume 96, Issue 2–3, pp 281–286 | Cite as

Injection seeded single mode intra-cavity absorption spectroscopy

  • B. Scherer
  • W. Salzmann
  • J. Wöllenstein
  • M. Weidemüller
Article

Abstract

We present a single mode intra-cavity spectroscopy system in which the test laser is locked to a narrow band external single mode laser. This technique solves many problems typically encountered in single mode intra-cavity spectroscopy: it results in good tuning properties, a stable single mode operation close to the lasing threshold, a high side-mode suppression and a reduction of spontaneous emission without the use of any frequency selective element. Measurements of broadband absorptions as well as measurements of a narrow band absorption line of the oxygen A-band are presented and compared with theoretical model predictions. The prototype described in this work provides an enhancement in sensitivity of approximately a factor of 12, and it demonstrates the influence of optical injection to single mode intra-cavity spectroscopy. As there is no need for any frequency selective element inside the cavity, the sensitivity can be massively enhanced by optimizing the laser cavity.

PACS

42.62.Fi 42.55.Px 07.07.Df 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.K. Tittel, G. Wysocki, A. Kosterev, Y. Bakhirin, Semiconductor Laser Based Trace Gas Sensor Technology: Recent Advances and Applications, Mid-Infrared Coherent Sources and Applications. NATO Science Series (Springer, New York, 2008), pp. 467–493 Google Scholar
  2. 2.
    B.A. Paldus, A.A. Kachanov, An historical overview of cavity-enhanced methods. Can. J. Phys. 83, 975–999 (2005) CrossRefADSGoogle Scholar
  3. 3.
    V.M. Baev, T. Latz, P.E. Toschek, Laser intracavity absorption spectroscopy. Appl. Phys. B 69, 171 (1999) –202 CrossRefADSGoogle Scholar
  4. 4.
    D. Romanini, K.K. Lehmann, Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta. J. Chem. Phys. 99, 6287 (1993) CrossRefADSGoogle Scholar
  5. 5.
    S.E. Vinogradov, A.A. Kachanov, S.A. Kovalenko, E.A. Sviridenkov, Nonlinear dynamics of a multimode dye laser with an adjustable resonator dispersion and implications for the sensitivity of in-resonator laser spectroscopy. JETP Lett. 55, 581 (1992) ADSGoogle Scholar
  6. 6.
    T. Hänsch, A. Schawlow, P. Toschek, Ultrasensitive response of a CW dye laser to selective extinction. IEEE J. Quantum. Electron. QE-8, 802 (1972) CrossRefADSGoogle Scholar
  7. 7.
    I. Rahinov, A. Goldman, S. Cheskis, Intracavity laser absorption spectroscopy and cavity ring-down spectroscopy in low-pressure flames. Appl. Phys. B 81, 143 (2005) –149 CrossRefADSGoogle Scholar
  8. 8.
    H.J. Kimble, Calculated enhancement for intracavity spectroscopy with a single-mode laser. IEEE J. Quantum. Electron. QE-16, 455 (1980) CrossRefADSGoogle Scholar
  9. 9.
    W. Gurlit, J.P. Burrows, H. Burkhard, R. Böhm, V.M. Baev, Intracavity diode laser for atmospheric field measurements. P.E.T. Infrared Phys. Technol. 37, 95 (1996) CrossRefADSGoogle Scholar
  10. 10.
    V.M. Baev, J. Eschner, E. Paeth, R. Schüler, P.E. Toschek, Intra-cavity spectroscopy with diode lasers. Appl. Phys. B 55, 463–477 (1992) CrossRefADSGoogle Scholar
  11. 11.
    L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T.W. Hänsch, A compact grating-stabilized diode laser system for atomic physics. Opt. Commun. 117, 541–549 (1995) CrossRefADSGoogle Scholar
  12. 12.
    L. Li, A unified description of semiconductor lasers with external light injection and its application to optical bistability. IEEE J. Quantum Electron. 30(8), 1723–1731 (1994) CrossRefADSGoogle Scholar
  13. 13.
    R. Lang, Injection locking properties of a semiconductor laser. IEEE J. Quantum Electron. 18, 976–983 (1982) CrossRefADSGoogle Scholar
  14. 14.
    L. Li, Static and dynamic properties of injection-locked semiconductor lasers. IEEE J. Quantum Electron. 30, 1701–1708 (1994) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • B. Scherer
    • 1
  • W. Salzmann
    • 2
  • J. Wöllenstein
    • 1
  • M. Weidemüller
    • 2
  1. 1.Fraunhofer Institute for Physical Measurement TechniquesFreiburgGermany
  2. 2.Physics InstituteAlbert-Ludwigs University FreiburgFreiburgGermany
  3. 3.Physics InstituteRuprecht-Karl University HeidelbergHeidelbergGermany

Personalised recommendations