Applied Physics B

, Volume 96, Issue 1, pp 71–77 | Cite as

Pulse shaping and diffraction properties of multi-layers reflection volume holographic gratings



The multi-layers coupled-wave theory is extended to systematically investigate the pulse shaping and diffraction properties of a system of multi-layers reflection volume holographic gratings (MRVHG) under ultrashort laser pulse (ULP) readout. The combined effects that the grating parameters such as the number and thickness of layers and gaps between them and the pulse duration of the input ULP have on the pulse shaping properties are considered. The pulse profiles of the diffracted and transmitted beams, the diffraction bandwidth, and the total diffraction efficiency are presented. The calculated results we have derived permit an optimal choice of grating parameters for the pulse shaping and process applications.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.K. Gaylord, M.G. Moharam, Analysis and applications of optical diffraction by gratings. Proc. IEEE 73, 894 (1985) CrossRefGoogle Scholar
  2. 2.
    L. Solymar, D.J. Cooke, Volume Holography and Volume Gratings (Academic Press, New York, 1981) Google Scholar
  3. 3.
    S. Breer, K. Buse, Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate. Appl. Phys. B, Lasers Opt. 66, 339 (1998) CrossRefADSGoogle Scholar
  4. 4.
    K.B. Hill, D.J. Brady, Pulse shaping in volume reflection holograms. Opt. Lett. 18, 1739 (1993) CrossRefADSGoogle Scholar
  5. 5.
    G.A. Rakuljic, V. Leyva, Volume holographic narrow-band optical filter. Opt. Lett. 18, 459 (1993) CrossRefADSGoogle Scholar
  6. 6.
    Y. Ding, D.D. Nolte, Z. Zheng, A. Kanan, A.M. Weiner, G.A. Brost, Bandwidth study of volume holography in photorefractive InP:Fe for femtosecond pulse readout at 1.5 μm. J. Opt. Soc. Am. B 15, 2763 (1998) CrossRefADSGoogle Scholar
  7. 7.
    C. Wang, L. Liu, A. Yan, D. Liu, D. Li, W. Qu, Pulse shaping properties of volume holographic gratings in anisotropic media. J. Opt. Soc. Am. A 23, 3191 (2006) CrossRefADSGoogle Scholar
  8. 8.
    K. Spariosu, I. Tengara, T. Jannson, Stratified volume diffractive elements: modeling and applications. Proc. SPIE 3133, 101 (1997) CrossRefADSGoogle Scholar
  9. 9.
    D. Yang, H. Wang, X. Guo, J. Zhao, H. Xiang, Wavelength demultiplexing with layered multiple Bragg gratings in LiNbO3:Fe crystal. Appl. Opt. 46, 5604 (2007) CrossRefADSGoogle Scholar
  10. 10.
    D.V. Raymond, H. Lambertus, Dynamic multiple wavelength filter using a stratified volume holographic optical element, U.S. Patent 5,640,256, 1997 Google Scholar
  11. 11.
    H. Kogelink, Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48, 2909 (1969) Google Scholar
  12. 12.
    A.P. Yakimovich, Multilayer three-dimensional holographic gratings. Opt. Spectrosc. (USSR) 49, 85 (1980) ADSGoogle Scholar
  13. 13.
    V.A. Komotskii, V.F. Nikulin, Theoretical analysis of diffraction of a Gaussian optical beam by a system of two diffraction gratings. Opt. Spectrosc. (USSR) 63, 239 (1987) ADSGoogle Scholar
  14. 14.
    R.D. Vre, L. Hesselink, Analysis of photorefractive stratified volume holographic optical elements. J. Opt. Soc. Am. B 11, 1800 (1994) CrossRefADSGoogle Scholar
  15. 15.
    S. Shi, G. Chen, W. Zhao, J. Liu, Nonlinear Optics (Xi’An, 2003) (in Chinese) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • A. Yan
    • 1
  • L. Liu
    • 1
  • L. Wang
    • 1
  • D. Liu
    • 1
  • J. Sun
    • 1
  • L. Wan
    • 2
  1. 1.Information Laboratory, Shanghai Institute of Optics and Fine MechanicsThe Chinese Academy of SciencesShanghaiP.R. China
  2. 2.College of Physics Science and TechnologyGuangxi UniversityNanningP.R. China

Personalised recommendations