Advertisement

Applied Physics B

, Volume 96, Issue 1, pp 161–173 | Cite as

Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm

  • A. Farooq
  • J. B. Jeffries
  • R. K. Hanson
Article

Abstract

Tunable diode-laser absorption of CO2 near 2.7 μm incorporating wavelength modulation spectroscopy with second-harmonic detection (WMS-2f) is used to provide a new sensor for sensitive and accurate measurement of the temperature behind reflected shock waves in a shock-tube. The temperature is inferred from the ratio of 2f signals for two selected absorption transitions, at 3633.08 and 3645.56 cm−1, belonging to the ν 1+ν 3 combination vibrational band of CO2 near 2.7 μm. The modulation depths of 0.078 and 0.063 cm−1 are optimized for the target conditions of the shock-heated gases (P∼1–2 atm, T∼800–1600 K). The sensor is designed to achieve a high sensitivity to the temperature and a low sensitivity to cold boundary-layer effects and any changes in gas pressure or composition. The fixed-wavelength WMS-2f sensor is tested for temperature and CO2 concentration measurements in a heated static cell (600–1200 K) and in non-reactive shock-tube experiments (900–1700 K) using CO2–Ar mixtures. The relatively large CO2 absorption strength near 2.7 μm and the use of a WMS-2f strategy minimizes noise and enables measurements with lower concentration, higher accuracy, better sensitivity and improved signal-to-noise ratio (SNR) relative to earlier work, using transitions in the 1.5 and 2.0 μm CO2 combination bands. The standard deviation of the measured temperature histories behind reflected shock waves is less than 0.5%. The temperature sensor is also demonstrated in reactive shock-tube experiments of n-heptane oxidation. Seeding of relatively inert CO2 in the initial fuel-oxidizer mixture is utilized to enable measurements of the pre-ignition temperature profiles. To our knowledge, this work represents the first application of wavelength modulation spectroscopy to this new class of diode lasers near 2.7 μm.

PACS

42.62.Fi 42.55.Px 07.07.Df 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Glassman, Combustion (Academic Press, San Diego, 1996) Google Scholar
  2. 2.
    R.K. Hanson, D.F. Davidson, in Handbook of Shock Waves, ed. by G. Ben-Dor, O. Igra, T. Elperin, vol. 1 (Academic Press, San Diego, 2001), Chap. 5.2 Google Scholar
  3. 3.
    J.A. Silver, D.J. Kane, P.S. Greenberg, Appl. Opt. 34, 2787 (1995) CrossRefADSGoogle Scholar
  4. 4.
    H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003) CrossRefADSGoogle Scholar
  5. 5.
    M.G. Allen, Meas. Sci. Technol. 9, 545 (1998) CrossRefADSGoogle Scholar
  6. 6.
    R.K. Hanson, J.B. Jeffries, in 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Washington, DC (2006), AIAA-2006–3441 Google Scholar
  7. 7.
    D. Richter, D.G. Lancaster, F.K. Tittle, Appl. Opt. 39, 4444 (2000) CrossRefADSGoogle Scholar
  8. 8.
    S.T. Sanders, J.A. Baldwin, T.P. Jenkins, D.S. Baer, R.K. Hanson, Proc. Combust. Inst. 28, 587 (2000) CrossRefGoogle Scholar
  9. 9.
    D.T. Cassidy, J. Reid, Appl. Opt. 21, 1185 (1982) CrossRefADSGoogle Scholar
  10. 10.
    L.C. Philippe, R.K. Hanson, Appl. Opt. 32, 6090 (1993) CrossRefADSGoogle Scholar
  11. 11.
    J. Reid, D. Labrie, Appl. Phys. B 26, 203 (1981) CrossRefADSGoogle Scholar
  12. 12.
    J. Wang, M. Maiorov, D.S. Baer, D.Z. Garbuzov, J.C. Connolly, R.K. Hanson, Appl. Opt. 39, 5579 (2000) CrossRefADSGoogle Scholar
  13. 13.
    J.T.C. Liu, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 78, 503 (2004) CrossRefADSGoogle Scholar
  14. 14.
    P. Kluczynski, O. Axner, Appl. Opt. 38, 5803 (1999) CrossRefADSGoogle Scholar
  15. 15.
    J.A. Silver, D.J. Kane, Meas. Sci. Technol. 10, 845 (1999) CrossRefADSGoogle Scholar
  16. 16.
    J.A. Silver, Appl. Opt. 31, 707 (1992) CrossRefADSGoogle Scholar
  17. 17.
    T. Aizawa, Appl. Opt. 40, 4894 (2001) CrossRefADSGoogle Scholar
  18. 18.
    T. Fernholz, H. Teichert, V. Ebert, Appl. Phys. B 75, 229 (2002) CrossRefADSGoogle Scholar
  19. 19.
    H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 45, 1052 (2006) CrossRefADSGoogle Scholar
  20. 20.
    T. Iseki, H. Tai, K. Kimura, Meas. Sci. Technol. 11, 594 (2000) CrossRefADSGoogle Scholar
  21. 21.
    R.T. Wainner, B.D. Green, M.G. Allen, M.A. White, J. Stafford-Evans, R. Naper, Appl. Phys. B 75, 249 (2002) CrossRefADSGoogle Scholar
  22. 22.
    G.B. Rieker, H. Li, X. Liu, J.T.C. Liu, J.B. Jeffries, R.K. Hanson, M.G. Allen, S.D. Wehe, P.A. Mulhall, H.S. Kindle, A. Kakuho, K.R. Sholes, T. Matsuura, S. Takatani, Proc. Combust. Inst. 31, 3041 (2007) CrossRefGoogle Scholar
  23. 23.
    H. Li, A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 89, 407 (2007) CrossRefADSGoogle Scholar
  24. 24.
    Nanosystem and Technologies GmbH, http://www.nanoplus.com
  25. 25.
    A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 90, 619 (2008) CrossRefADSGoogle Scholar
  26. 26.
    A. Farooq, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 19 (2008) Google Scholar
  27. 27.
    K. Wunderle, S. Wagner, V. Ebert, in Laser Applications to Chemical, Security and Environmental Analysis, St. Petersburg, FL (2008), LACSEA-LMB1 Google Scholar
  28. 28.
    D.S. Baer, V. Nagali, E.R. Furlong, R.K. Hanson, M.E. Newfield, AIAA J. 34, 489 (1996) CrossRefADSGoogle Scholar
  29. 29.
    V. Nagali, S.I. Chou, D.S. Baer, R.K. Hanson, Appl. Opt. 35, 4026 (1996) CrossRefADSGoogle Scholar
  30. 30.
    J.T.C. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 43, 6500 (2004) CrossRefADSGoogle Scholar
  31. 31.
    L.S. Rothman, D. Jacquemart, The 2004 edition of the HITRAN compilation, in 8th HIITRAN Database Conf., Boston: Harvard-Smithsonian Center for Astrophysics, 2004 Google Scholar
  32. 32.
  33. 33.
    J.T. Herbon, R.K. Hanson, D.M. Golden, C.T. Bowman, Proc. Combust. Inst. 29, 1201 (2002) CrossRefGoogle Scholar
  34. 34.
    M.A. Oehlschlaeger, D.F. Davidson, R.K. Hanson, J. Phys. Chem. A 108, 4247 (2004) CrossRefGoogle Scholar
  35. 35.
    Z. Hong, G.A. Pang, S.S. Vasu, D.F. Davidson, R.K. Hanson, The use of driver inserts to eliminate facility effects behind reflected shock waves. In preparation Google Scholar
  36. 36.
    Z. Hong, G.A. Pang, S.S. Vasu, D.F. Davidson, R.K. Hanson, Analysis of contact surface tailoring conditions in shock-tubes. In preparation Google Scholar
  37. 37.
    G. Emanuel, in Handbook of Shock Waves, vol. 1, ed. by G. Ben-Dor, O. Igra, T. Elperin (Academic Press, San Diego, 2001), Chap. 3.1 CrossRefGoogle Scholar
  38. 38.
    H. Mirels, in Shock-Tube Research, Proceedings of the Eighth International Shock-Tube Symposium, ed. by J.L. Stollery, A.G. Gaydon, P.R. Owen (Chapman & Hall, London, 1972), pp. 6/2–30 Google Scholar
  39. 39.
    K.J. Badcock, Int. J. Numer. Methods Fluids 14, 1151 (1992) zbMATHCrossRefADSGoogle Scholar
  40. 40.
    E.L. Petersen, R.K. Hanson, AIAA J. 41, 1314 (2003) CrossRefADSGoogle Scholar
  41. 41.
    B. Sirjean et al., A high-temperature chemical kinetic model of n-alkane oxidation, JetSurf version 0.2 (http://melchior.usc.edu/JetSurF/Version0_2/Index.html) (2008)
  42. 42.
    H. Li, Z.C. Owens, D.F. Davidson, R.K. Hanson, Int. J. Chem. Kinet. 40, 189 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations