Applied Physics B

, Volume 95, Issue 2, pp 281–286

Infrared laser-spectroscopic analysis of 14NO and 15NO in human breath



We report on monitoring of nitric oxide (NO) traces in human breath via infrared cavity leak-out spectroscopy. Using a CO sideband laser near 5 μm wavelength and an optical cavity with two high-reflectivity mirrors (R=99.98%), the minimum detectable absorption is 2×10−10 cm−1 Hz1/2. This allows for spectroscopic analysis of rare NO isotopologues with unprecedented sensitivity. Application to simultaneous online detection of 14NO and 15NO in breath samples collected in the nasal cavity is described for the first time. We achieved a noise-equivalent detection limit of 7 parts per trillion for nasal 15NO (integration time: 70 s).


33.57.+c 42.62.Fi 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.E. Gustafsson, A.M. Leone, M.G. Persson, N.P. Wiklund, S. Moncada, Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem. Biophys. Res. Commun. 181, 852–857 (1991) CrossRefGoogle Scholar
  2. 2.
    M. Imada, J. Iwamoto, S. Nonaka, Y. Kobayashi, T. Unno, Measurement of nitric oxide in human nasal airway. Eur. Respir. J. 9, 556–559 (1996) CrossRefGoogle Scholar
  3. 3.
    D.W. Allan, N. Ashby, C.C. Hodge, The science of timekeeping. Hewlett Packard Appl. Note 1289, 56–71 (1997) Google Scholar
  4. 4.
    P.G. Djupesland, J.M. Chatkin, W. Qian, P. Cole, N. Zamel, P. Mcclean, H. Furlott, J.S.J. Haight, Aerodynamics influences on nasal nitric oxide output measurements. Acta Oto-Laryngol. 119, 479–485 (1999) CrossRefGoogle Scholar
  5. 5.
    S.A. Kharitonov, P.J. Barnes, Exhaled markers of pulmonary disease. Am. J. Respir. Crit. Care Med. 163, 1693–1722 (2001) Google Scholar
  6. 6.
    A.A. Kosterev, A.L. Malinovsky, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Cavity ring down spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser. Appl. Opt. 40, 5522–5529 (2001) CrossRefADSGoogle Scholar
  7. 7.
    L. Menzel, A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, W. Urban, Spectroscopic detection of biological NO with a quantum cascade laser. Appl. Phys. B 72, 859–863 (2001) ADSGoogle Scholar
  8. 8.
    C. Roller, K. Namjou, J.D. Jeffers, M. Camp, A. Mock, P.J. McCann, J. Grego, Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation. Appl. Opt. 41, 6018–6029 (2002) CrossRefADSGoogle Scholar
  9. 9.
    D.D. Nelson, J.H. Shorter, J.B. McManus, M.S. Zahniser, Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer. Appl. Phys. B 75, 343–350 (2002) CrossRefADSGoogle Scholar
  10. 10.
    W.H. Weber, T.J. Remillard, R.E. Chase, J.F. Richert, F. Capasso, C. Gmachl, A.L. Hutchinson, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, Using a wavelength-modulation quantum cascade laser to measure NO concentration in the parts-per-billion range for vehicle emissions certification. Appl. Spectrosc. 56, 706–714 (2002) CrossRefADSGoogle Scholar
  11. 11.
    Y.C. Luiking, N.E. Deutz, Isotopic investigation of nitric oxide metabolism in disease. Curr. Opin. Clin. Nutr. Metab. Care 6, 103–108 (2003) CrossRefGoogle Scholar
  12. 12.
    D. Halmer, G. von Basum, P. Hering, M. Mürtz, Fast exponential fitting algorithm for real-time instrumental use. Rev. Sci. Instrum. 75, 2187–2191 (2004) CrossRefADSGoogle Scholar
  13. 13.
    M.L. Silva, D.M. Sonnenfroh, D.I. Rosen, M.G. Allen, A. O’ Keefe, Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL. Appl. Phys. B 81, 705–710 (2005) CrossRefADSGoogle Scholar
  14. 14.
    D. Halmer, G.V. Basum, M. Horstjann, P. Hering, M. Mürtz, Time resolved simultaneous detection of 14NO and 15NO via mid-infrared cavity leak-out spectroscopy. Isot. Environ. Health Stud. 41, 303–311 (2005) CrossRefGoogle Scholar
  15. 15.
    L.S. Rothman, D. Jacquemart, D.C. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.M. Flaud, R.R. Gamache, A. Goldman, J.M. Hartmann, K.W. Jucks, A.G. Maki, J.Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005) CrossRefADSGoogle Scholar
  16. 16.
    American Thoracic Society (ATS), the European Respiratory Society (ERS), ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care Med. 171, 912–930 (2005) CrossRefGoogle Scholar
  17. 17.
    M. Mürtz, D. Halmer, M. Horstjann, S. Thelen, P. Hering, Ultra sensitive trace gas detection for biomedical applications. Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 63, 963–969 (2006) CrossRefGoogle Scholar
  18. 18.
    B.W.M. Moeskops, S.M. Cristescu, F.J.M. Harren, Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser. Opt. Lett. 31, 823–825 (2006) CrossRefADSGoogle Scholar
  19. 19.
    Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, F.K. Tittel, D.A. Yarekha, L. Hvozdara, M. Giovannini, J. Faist, Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy. Appl. Phys. B 82, 149–154 (2006) CrossRefADSGoogle Scholar
  20. 20.
    M.R. McCurdy, Y.A. Bakhirkin, F.K. Tittel, Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide. Appl. Phys. B 85, 445–452 (2006) CrossRefADSGoogle Scholar
  21. 21.
    J. Yi, K. Namjou, Z.N. Zahran, P.J. McCann, G.B. Richter-Addo, Specific detection of gaseous NO and 15NO in the headspace from liquid-phase reactions involving NO-generating organic, inorganic, and biochemical samples using a mid-infrared laser. Nitric Oxide 15, 154–162 (2006) CrossRefGoogle Scholar
  22. 22.
    C. Mitscherling, J. Lauenstein, C. Maul, A.A. Veselov, O.S. Vasyutinskii, K.H. Gericke, Non-invasive and isotope-selective laser-induced fluorescence spectroscopy of nitric oxide in exhaled air. J. Breath Res. 1, 026003 (2007) CrossRefADSGoogle Scholar
  23. 23.
    M.R. McCurdy, Y. Bakhirkin, G. Wysocki, F.K. Tittel, Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy. J. Biomed. Optics 12, 034034 (2007) CrossRefADSGoogle Scholar
  24. 24.
    T. Fritsch, P. Brouzos, K. Heinrich, M. Kelm, T. Rassaf, P. Hering, P. Kleinbongard, M. Mürtz, NO detection in biological samples: differentiation of 14NO and 15NO using infrared laser spectroscopy. Nitric Oxide 19, 50–56 (2008) CrossRefGoogle Scholar
  25. 25.
    T. Fritsch, M. van Herpen, G. von Basum, P. Hering, M. Mürtz, Is exhaled carbon monoxide level associated with blood glucose level? A comparison of two breath analyzing methods. J. Biomed. Opt. 13, 034012 (2008) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institut für LasermedizinUniversität DüsseldorfDüsseldorfGermany

Personalised recommendations