Advertisement

Applied Physics B

, Volume 95, Issue 2, pp 219–225 | Cite as

Dark resonances for ground-state transfer of molecular quantum gases

  • M. J. Mark
  • J. G. Danzl
  • E. Haller
  • M. Gustavsson
  • N. Bouloufa
  • O. Dulieu
  • H. Salami
  • T. Bergeman
  • H. Ritsch
  • R. Hart
  • H.-C. Nägerl
Article

Abstract

One possible way to produce ultra-cold, high-phase-space-density quantum gases of molecules in the rovibronic ground state is given by molecule association from quantum-degenerate atomic gases on a Feshbach resonance and subsequent coherent optical multi-photon transfer into the rovibronic ground state. In ultra-cold samples of Cs2 molecules, we observe two-photon dark resonances that connect the intermediate rovibrational level |v=73,J=2〉 with the rovibrational ground state |v=0,J=0〉 of the singlet X 1 Σ g + ground-state potential. For precise dark resonance spectroscopy we exploit the fact that it is possible to efficiently populate the level |v=73,J=2〉 by two-photon transfer from the dissociation threshold with the stimulated Raman adiabatic passage (STIRAP) technique. We find that at least one of the two-photon resonances is sufficiently strong to allow future implementation of coherent STIRAP transfer of a molecular quantum gas to the rovibrational ground state |v=0,J=0〉.

PACS

33.20.-t 67.85.-d 37.10.-x 33.80.-b 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Southwell (ed.), Nature (Insight) 416, 205 (2002) CrossRefADSGoogle Scholar
  2. 2.
    J. Doyle, B. Friedrich, R.V. Krems, F. Masnou-Seeuws, Eur. Phys. J. D 31, 149 (2004) CrossRefADSGoogle Scholar
  3. 3.
    R.V. Krems, Phys. Chem. Chem. Phys. 10, 4079 (2008) CrossRefGoogle Scholar
  4. 4.
    S.Y.T. van de Meerakker, H.L. Bethlem, G. Meijer, Nat. Phys. 4, 595 (2008) CrossRefGoogle Scholar
  5. 5.
    K.M. Jones, E. Tiesinga, P.D. Lett, P.S. Julienne, Rev. Mod. Phys. 78, 483 (2006) CrossRefADSGoogle Scholar
  6. 6.
    A.N. Nikolov, J.R. Ensher, E.E. Eyler, H. Wang, W.C. Stwalley, P.L. Gould, Phys. Rev. Lett. 84, 246 (2000) CrossRefADSGoogle Scholar
  7. 7.
    J.M. Sage, S. Sainis, T. Bergeman, D. DeMille, Phys. Rev. Lett. 94, 203001 (2005) CrossRefADSGoogle Scholar
  8. 8.
    M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, P. Pillet, Science 321, 232 (2008) CrossRefADSGoogle Scholar
  9. 9.
    J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, M. Weidemüller, Phys. Rev. Lett. 101, 133004 (2008) CrossRefADSGoogle Scholar
  10. 10.
    Ultracold Fermi Gases, Proc. International School of Physics Enrico Fermi, Course CLXIV, ed. by M. Inguscio, W. Ketterle, C. Salomon (IOS Press, Amsterdam, 2008) Google Scholar
  11. 11.
    R.V. Krems, Int. Rev. Phys. Chem. 24, 99 (2005) CrossRefGoogle Scholar
  12. 12.
    P. Staanum, S.D. Kraft, J. Lange, R. Wester, M. Weidemüller, Phys. Rev. Lett. 96, 023201 (2006) CrossRefADSGoogle Scholar
  13. 13.
    N. Zahzam, T. Vogt, M. Mudrich, D. Comparat, P. Pillet, Phys. Rev. Lett. 96, 023202 (2006) CrossRefADSGoogle Scholar
  14. 14.
    T. Zelevinsky, S. Kotochigova, J. Ye, Phys. Rev. Lett. 100, 043201 (2008) CrossRefADSGoogle Scholar
  15. 15.
    D. DeMille, S. Sainis, J. Sage, T. Bergeman, S. Kotochigova, E. Tiesinga, Phys. Rev. Lett. 100, 043202 (2008) CrossRefADSGoogle Scholar
  16. 16.
    D. DeMille, Phys. Rev. Lett. 88, 067901 (2002) CrossRefADSGoogle Scholar
  17. 17.
    K. Góral, L. Santos, M. Lewenstein, Phys. Rev. Lett. 88, 170406 (2002) CrossRefGoogle Scholar
  18. 18.
    M. Baranov, L. Dobrek, K. Góral, L. Santos, M. Lewenstein, Phys. Scr. T102, 74 (2002) CrossRefADSGoogle Scholar
  19. 19.
    K. Winkler, F. Lang, G. Thalhammer, P. v. d. Straten, R. Grimm, J. Hecker Denschlag, Phys. Rev. Lett. 98, 043201 (2007) CrossRefADSGoogle Scholar
  20. 20.
    K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998) CrossRefADSGoogle Scholar
  21. 21.
    J.G. Danzl, E. Haller, M. Gustavsson, M.J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, H.-C. Nägerl, Science 321, 1062 (2008) CrossRefADSGoogle Scholar
  22. 22.
    K.-K. Ni, S. Ospelkaus, M.H.G. de Miranda, A. Pe’er, B. Neyenhuis, J.J. Zirbel, S. Kotochigova, P.S. Julienne, D.S. Jin, J. Ye, Science 322, 231 (2008) CrossRefADSGoogle Scholar
  23. 23.
    W.C. Stwalley, Eur. Phys. J. D 31, 221 (2004) CrossRefADSGoogle Scholar
  24. 24.
    F. Lang, K. Winkler, C. Strauss, R. Grimm, J. Hecker Denschlag, Phys. Rev. Lett. 101, 133005 (2008) CrossRefADSGoogle Scholar
  25. 25.
    J. Herbig, T. Kraemer, M. Mark, T. Weber, C. Chin, H.-C. Nägerl, R. Grimm, Science 301, 1510 (2003) CrossRefADSGoogle Scholar
  26. 26.
    M. Mark, F. Ferlaino, S. Knoop, J.G. Danzl, T. Kraemer, C. Chin, H.-C. Nägerl, R. Grimm, Phys. Rev. A 76, 042514 (2007) CrossRefADSGoogle Scholar
  27. 27.
    H. Salami, T. Bergeman, O. Dulieu, D. Li, F. Xie, L. Li, in preparation (2008) Google Scholar
  28. 28.
    C. Lisdat, O. Dulieu, H. Knöckel, E. Tiemann, Eur. Phys. J. D 17, 319 (2001) CrossRefADSGoogle Scholar
  29. 29.
    M.R. Manaa, A.J. Ross, F. Martin, P. Crozet, A.M. Lyyra, L. Li, C. Amiot, T. Bergeman, J. Chem. Phys. 117, 11208 (2002) CrossRefADSGoogle Scholar
  30. 30.
    T. Bergeman, C.E. Fellows, R.F. Gutterres, C. Amiot, Phys. Rev. A 67, 050501 (2003) CrossRefADSGoogle Scholar
  31. 31.
    P. Qi, J. Bai, E. Ahmed, A.M. Lyyra, S. Kotochigova, A.J. Ross, C. Effantin, P. Zalicki, J. Vigué, G. Chawla, R.W. Field, T.-J. Whang, W.C. Stwalley, H. Knöckel, E. Tiemann, J. Shang, L. Li, T. Bergeman, J. Chem. Phys. 127, 044301 (2007) CrossRefADSGoogle Scholar
  32. 32.
    H. Salami, T. Bergeman, B. Beser, J. Bai, E. Ahmed, S. Kotochigova, A.M. Lyyra, J. Huennekens, C. Lisdat, O. Dulieu, P. Crozet, A.J. Ross, in preparation (2008) Google Scholar
  33. 33.
    D. Colbert, W.H. Miller, J. Chem. Phys. 96, 1982 (1992) CrossRefADSGoogle Scholar
  34. 34.
    O. Docenko, M. Tamanis, R. Ferber, E.A. Pazyuk, A. Zaitservkii, A.V. Stolyarov, A. Pashov, H. Knöckel, E. Tiemann, Phys. Rev. A 75, 042503 (2007) CrossRefADSGoogle Scholar
  35. 35.
    F. Xie, D. Li, L. Tyree, L. Li, V. Sovkov, V.S. Ivanov, S. Magnier, A.M. Lyyra, J. Chem. Phys. 128, 204313 (2008) CrossRefADSGoogle Scholar
  36. 36.
    W. Weickenmeier, U. Diemer, M. Wahl, M. Raab, W. Demtröder, W. Müller, J. Chem. Phys. 82, 5354 (1985) CrossRefADSGoogle Scholar
  37. 37.
    C. Amiot, O. Dulieu, J. Chem. Phys. 117, 5155 (2002) CrossRefADSGoogle Scholar
  38. 38.
    B.W. Shore, K. Bergmann, J. Oreg, S. Rosenwaks, Phys. Rev. A 44, 7442 (1991) CrossRefADSGoogle Scholar
  39. 39.
    E. Kuznetsova, P. Pellegrini, R. Côté, M.D. Lukin, S.F. Yelin, Phys. Rev. A 78, 021402 (2008) CrossRefADSGoogle Scholar
  40. 40.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002) CrossRefADSGoogle Scholar
  41. 41.
    D. Jaksch, V. Venturi, J.I. Cirac, C.J. Williams, P. Zoller, Phys. Rev. Lett. 89, 040402 (2002) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • M. J. Mark
    • 1
  • J. G. Danzl
    • 1
  • E. Haller
    • 1
  • M. Gustavsson
    • 1
  • N. Bouloufa
    • 2
  • O. Dulieu
    • 2
  • H. Salami
    • 3
  • T. Bergeman
    • 3
  • H. Ritsch
    • 4
  • R. Hart
    • 1
  • H.-C. Nägerl
    • 1
  1. 1.Institut für Experimentalphysik und Zentrum für QuantenphysikUniversität InnsbruckInnsbruckAustria
  2. 2.Laboratoire Aimé Cotton, CNRSUniversité Paris-SudOrsay CedexFrance
  3. 3.Department of Physics and AstronomySUNYStony BrookUSA
  4. 4.Institut für Theoretische Physik und Zentrum für QuantenphysikUniversität InnsbruckInnsbruckAustria

Personalised recommendations