Applied Physics B

, Volume 95, Issue 2, pp 335–340 | Cite as

Transient characteristics of green upconversion emission of Er3+ in MgO:LiNbO3 crystal: Mg threshold concentration effect

  • D.-L. Zhang
  • C. Wu
  • Q.-Z. Yang
  • L. Sun
  • Y.-H. Xu
  • E. Y. B. Pun


Transient characteristics of upconverted emission (560 nm) of Er3+ in LiNbO3 crystals codoped with 0–7.4 mol% MgO were studied under pulse excitation at 800-nm wavelength. The results show that the transients display considerable Mg-doping-level-dependent nonexponential behavior and a clear Mg optical-damage-resistance threshold concentration effect. Below the Mg threshold concentration, the lifetime increases slightly with the increased Mg concentration. Above the threshold, however, the lifetime drops abruptly by 4–7 times and the nonexponential feature becomes more evident. It is found that each transient can be fitted by a double-exponential function contributed from isolated and clustered Er3+ sites. The fit parameters show that doping of MgO above the threshold concentration increases the clustered Er site concentration and the nonradiative cross relaxation probability. The Mg threshold concentration effect derived from the transients is in qualitative agreement with that from the fluorescence spectrum measured as a function of the Mg concentration. The effect of the Mg threshold concentration on the clustered Er site concentration is qualitatively explained on the basis of the microscopic defect model of MgO:LiNbO3 and is conducted with the Mg site change around the threshold concentration.


42.70.Hj 78.55.Hx 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Brinkmann, W. Sohler, H. Suche, Electron. Lett. 27, 415 (1991) CrossRefGoogle Scholar
  2. 2.
    Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, D. Sciancalepore, IEEE J. Sel. Top. Quantum Electron. 6, 101 (2000) CrossRefGoogle Scholar
  3. 3.
    J. Amin, J.A. Aust, N.A. Sanford, Appl. Phys. Lett. 69, 3785 (1996) CrossRefADSGoogle Scholar
  4. 4.
    C.H. Huang, L. McCaughan, IEEE J. Sel. Top. Quantum Electron. 2, 367 (1996) CrossRefGoogle Scholar
  5. 5.
    E. Cantelar, G.A. Torchia, J.A. Sanz-Garcia, P.L. Pernas, G. Lifante, F. Cusso, Appl. Phys. Lett. 83, 2991 (2003) CrossRefADSGoogle Scholar
  6. 6.
    B.K. Das, R. Ricken, V. Quiring, H. Suche, W. Sohler, Opt. Lett. 29, 165 (2004) CrossRefADSGoogle Scholar
  7. 7.
    G. Schreiber, D. Hofmann, W. Grundkotter, Y.L. Lee, H. Suche, V. Quiring, R. Ricken, W. Sohler, Proc. SPIE 4277, 144 (2001) CrossRefADSGoogle Scholar
  8. 8.
    D.A. Bryan, R. Gerson, H.E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984) CrossRefADSGoogle Scholar
  9. 9.
    L. Nunez, B. Herreros, R. Duchowicz, G. Lifante, J.O. Tocho, F. Cusso, J. Lumin. 60–61, 81 (1994) CrossRefGoogle Scholar
  10. 10.
    D.M. Gill, L. McCaughan, J.C. Wright, Phys. Rev. B 53, 2334 (1996) CrossRefADSGoogle Scholar
  11. 11.
    V. Dierolf, M. Koerdt, Phys. Rev. B 61, 8043 (2000) CrossRefADSGoogle Scholar
  12. 12.
    J.J. Ju, T.Y. Kwon, S.I. Yun, M. Cha, H.J. Seo, Appl. Phys. Lett. 69, 1358 (1996) CrossRefADSGoogle Scholar
  13. 13.
    J.J. Ju, M.H. Lee, M. Cha, H.J. Seo, J. Opt. Soc. Am. B 20, 1990 (2003) CrossRefADSGoogle Scholar
  14. 14.
    L. Sun, A.H. Li, Q. Lü, F.Y. Guo, W. Cai, Y.H. Xu, L.C. Zhao, Appl. Phys. Lett. 91, 071914 (2007) CrossRefADSGoogle Scholar
  15. 15.
    G.G. Zhong, J. Jin, Z.K. Wu, J. Opt. Soc. Am. 70, 631 (1980) ADSGoogle Scholar
  16. 16.
    L.J. Hu, Y.H. Chang, I.N. Lin, S.J. Yang, J. Cryst. Growth 114, 191 (1991) CrossRefADSGoogle Scholar
  17. 17.
    N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, J. Solid State Chem. 118, 148 (1995) CrossRefADSGoogle Scholar
  18. 18.
    D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, K. Polgár, Phys. Status Solidi (Rapid Res. Lett.) 2, 284 (2008) CrossRefGoogle Scholar
  19. 19.
    D. Maxein, S. Kratz, P. Reckenthaeler, J. Bükers, D. Haertle, T. Woike, K. Buse, Appl. Phys. B, Lasers Opt. 92, 543 (2008) CrossRefADSGoogle Scholar
  20. 20.
    A. Harhira, L. Guilbert, P. Bourson, H. Rinnert, Appl. Phys. B, Lasers Opt. 92, 555 (2008) CrossRefADSGoogle Scholar
  21. 21.
    L. Kovacs, L. Rebouta, J.C. Soares, M.F. da Silva, Radiat. Eff. Defects Solids 119, 445 (1991) CrossRefGoogle Scholar
  22. 22.
    L. Kovacs, L. Rebouta, J.C. Soares, M.F. da Silva, M. Hage-Ali, J.P. Stoquert, P. Siffert, J.A. Sanz-Garcia, G. Corradi, Zs. Szaller, K. Polgar, J. Phys., Condens. Matter 5, 781 (1993) CrossRefADSGoogle Scholar
  23. 23.
    X.Q. Feng, T.B. Tang, J. Phys., Condens. Matter 5, 2423 (1993) CrossRefADSGoogle Scholar
  24. 24.
    F. Auzel, Chem. Rev. 104, 139 (2004) CrossRefGoogle Scholar
  25. 25.
    M. Stalder, M. Bass, J. Opt. Soc. Am. B 8, 177 (1991) CrossRefADSGoogle Scholar
  26. 26.
    T. Gog, M. Griebenow, G. Materlik, Phys. Lett. A 181, 417 (1993) CrossRefADSGoogle Scholar
  27. 27.
    D.L. Zhang, P.R. Hua, E.Y.B. Pun, J. Appl. Phys. 101, 113513 (2007) CrossRefADSGoogle Scholar
  28. 28.
    I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, Ch. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, W. von der Osten, Appl. Phys. A, Mater. Sci. Process. 64, 33 (1997) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • D.-L. Zhang
    • 1
    • 2
    • 3
  • C. Wu
    • 1
    • 2
  • Q.-Z. Yang
    • 1
    • 2
  • L. Sun
    • 4
  • Y.-H. Xu
    • 4
  • E. Y. B. Pun
    • 3
  1. 1.Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics EngineeringTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Key Laboratory of Optoelectronics Information and Technical Science (Tianjin University)Ministry of EducationTianjinPeople’s Republic of China
  3. 3.Department of Electronic EngineeringCity University of Hong KongKowloon, Hong Kong SARPeople’s Republic of China
  4. 4.Department of Material Physics and Chemistry, School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations