Applied Physics B

, 94:635

Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature

  • T. Martynkien
  • A. Anuszkiewicz
  • G. Statkiewicz-Barabach
  • J. Olszewski
  • G. Golojuch
  • M. Szczurowski
  • W. Urbanczyk
  • J. Wojcik
  • P. Mergo
  • M. Makara
  • T. Nasilowski
  • F. Berghmans
  • H. Thienpont
Article

Abstract

We designed, fabricated, and characterized birefringent holey fibers with zero polarimetric sensitivity to temperature. The sensitivity measurements were carried out in a wide spectral range of 0.68–1.55 μm in fibers with different hole and pitch values and with birefringence induced by a pair of large holes adjacent to the core. Our results show that zero sensitivity to temperature can be obtained at certain wavelengths for the bare fibers with properly adjusted geometrical parameters. Moreover, the spectral measurements of the sensitivity to temperature are in good agreement with the modeling results for all the investigated fibers.

PACS

42.81.Gs 42.81.Pa 

References

  1. 1.
    J. Noda, K. Okamoto, Y. Sasaki, Polarization-maintaining fibers and their applications. J. Lightw. Technol. LT-4, 1071–1088 (1986) CrossRefADSGoogle Scholar
  2. 2.
    W. Urbanczyk, T. Martynkien, W.J. Bock, Dispersion effects in elliptical core highly birefringent fibers. Appl. Opt. 40, 1911–1920 (2001) CrossRefADSGoogle Scholar
  3. 3.
    A. Ortigosa-Blanch, J.C. Knight, W.J. Wadsworth, J. Arriaga, B.J. Mangan, T.A. Birks, P.St.J. Russell, Highly birefringent photonic crystal fibers. Opt. Lett. 25, 1325–1327 (2000) CrossRefADSGoogle Scholar
  4. 4.
    K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, M. Fujita, Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Opt. Express 9, 676–680 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    T.P. Hansen, J. Broeng, S.E.B. Libori, E. Knudsen, A. Bjarklev, J.R. Jensen, H. Simonsen, Highly birefringent index guiding photonic crystal fibers. IEEE Photonics Technol. Lett. 13, 588–590 (2001) CrossRefADSGoogle Scholar
  6. 6.
    T. Ritari, T. Niemi, H. Ludvigsen, M. Wegmuller, N. Gisin, J.R. Folkenberg, A. Petterson, Polarization mode dispersion of large mode-area photonic crystal fibers. Opt. Commun. 226, 233–239 (2003) CrossRefADSGoogle Scholar
  7. 7.
    A. Michie, J. Canning, K. Lyytikäinen, M. Aslund, J. Digweed, Temperature independent highly birefringent photonic crystal fibre. Opt. Express 12, 5160–5165 (2004) CrossRefADSGoogle Scholar
  8. 8.
    T. Ritari, H. Ludvigsen, M. Wegmuller, M. Legré, N. Gisin, J.R. Folkenberg, M.D. Nielsen, Experimental study of polarization properties of highly birefringent photonic crystal fibers. Opt. Express 12, 5931–5939 (2004) CrossRefADSGoogle Scholar
  9. 9.
    D. Kim, J.U. Kang, Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity. Opt. Express 12, 4490–4495 (2004) CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    C.L. Zhao, X. Yang, C. Lu, W. Jin, M.S. Demokan, Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror. IEEE Photonics Technol. Lett. 16, 2535–2537 (2004) CrossRefADSGoogle Scholar
  11. 11.
    T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Gołojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, H. Thienpont, Measurements of polarimetric sensitivity to temperature in birefringent holey fibers. Meas. Sci. Technol. 18, 3055–3060 (2007) CrossRefADSGoogle Scholar
  12. 12.
    X. Dong, H.Y. Tam, P. Shum, Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Appl. Phys. Lett. 90, 151113 (2007) CrossRefADSGoogle Scholar
  13. 13.
    O. Frazão, J.M. Baptista, J.L. Santos, Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror. IEEE Sens. J. 7, 1453–1455 (2007) CrossRefGoogle Scholar
  14. 14.
    A. Ortigosa-Blanch, A. Díez, M. Delgado-Pinar, J.L. Cruz, M.V. Andrés, Temperature independence of birefringence and group velocity dispersion in photonic crystal fibres. Electron. Lett. 40, 1327–1328 (2004) CrossRefGoogle Scholar
  15. 15.
    R. Kotynski, K. Panajotov, M. Antkowiak, T. Nasilowski, P. Lesiak, J. Wojcik, H. Thienpont, Interplay of form and material birefringence in photonic crystal fibers: application for sensing, in Proc. of IEEE 6th International Conference on Transparent Optical Networks, Wroclaw, Poland, 4–8 July 2004, vol. 2, pp. 95–98 Google Scholar
  16. 16.
    T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, H. Thienpont, Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry. Appl. Phys. B 81, 325–331 (2005) CrossRefADSGoogle Scholar
  17. 17.
    W.J. Bock, W. Urbanczyk, Measurements of sensitivity of birefringent holey fiber to temperature, elongation, and hydrostatic pressure, in Proc. of the 21st IEEE-Instrumentation and Measurement Technology Conference, Como, Italy, 18–20 May 2004, vol. 2, pp. 1228–1232 Google Scholar
  18. 18.
    M. Wegmuller, M. Legré, N. Gisin, T.P. Hansen, Ch. Jakobsen, J. Broeng, Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm. Opt. Express 13, 1457–1467 (2005) CrossRefADSGoogle Scholar
  19. 19.
    T. Martynkien, M. Szpulak, W. Urbanczyk, Modeling and measurement of temperature sensitivity in birefringent photonic crystal holey fibers. Appl. Opt. 44, 7780–7788 (2005) CrossRefADSGoogle Scholar
  20. 20.
    Y.-J. Kim, U.-C. Paek, B.H. Lee, Measurement of refractive-index variation with temperature by use of long-period fiber gratings. Opt. Lett. 27, 1297–1299 (2002) CrossRefADSGoogle Scholar
  21. 21.
    N.P. Bansal, R.H. Doremus, Handbook of Glass Properties (Academic Press, London, 1986) Google Scholar
  22. 22.
    Hoya Corporation USA Optics Division, http://www.hoyaoptics.com/, document Title: Optical Glass
  23. 23.
    P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, W. Urbanczyk, Measurement and modelling of dispersion characteristics of a two-mode birefringent holey fibre. Meas. Sci. Technol. 17, 626–630 (2006) CrossRefADSGoogle Scholar
  24. 24.
    M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbanczyk, J. Wojcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, H. Thienpont, Experimental and theoretical investigations of birefringent holey fiber with triple defect. Appl. Opt. 44, 2652–2658 (2005) CrossRefADSGoogle Scholar
  25. 25.
    L. Labonte, P. Roy, D. Pagnoux, F. Louradour, C. Restoin, G. Melin, E. Burov, Experimental and numerical analysis of the chromatic dispersion dependence upon the actual profile of small core microstructured fibres. J. Opt. A, Pure Appl. Opt. 8, 933–938 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • T. Martynkien
    • 1
  • A. Anuszkiewicz
    • 1
  • G. Statkiewicz-Barabach
    • 1
  • J. Olszewski
    • 1
  • G. Golojuch
    • 1
  • M. Szczurowski
    • 1
  • W. Urbanczyk
    • 1
  • J. Wojcik
    • 2
  • P. Mergo
    • 2
  • M. Makara
    • 2
  • T. Nasilowski
    • 3
  • F. Berghmans
    • 3
  • H. Thienpont
    • 3
  1. 1.Institute of PhysicsWroclaw University of TechnologyWroclawPoland
  2. 2.Laboratory of Optical Fiber TechnologyMarie Curie-Skłodowska UniversityLublinPoland
  3. 3.Vrije Universiteit BrusselBrusselsBelgium

Personalised recommendations