Applied Physics B

, Volume 95, Issue 3, pp 637–645

Holographic phase conjugation through a sub-wavelength hole



Holographic phase conjugation is analyzed as a method to create a photo-refractive lens with high numerical aperture. For this purpose a sub-wavelength hole is drilled into a metal surface directly on top of an iron-doped lithium niobate crystal. An interference pattern generated by the light coming from this point source and a plane reference wave is recorded. By using the phase-conjugated reference wave for read-out, a light wave being focused onto the former point source is reconstructed. In principle, a focusing system close to the theoretical diffraction limit could be implemented by this method. The performance of this arrangement is mainly determined by properties of the lithium niobate crystal, especially the crystal symmetry. Experimentally, the tight holographic focusing is demonstrated. The focus width of the reconstructed wave is shown to be below 1.2 μm, which is our spatial resolution. The diffraction efficiency obtained, however, is just 3×10−5 compared to 3×10−2 in the plane-wave case. This can be explained by experimental reasons, the inhomogeneous light intensity and limitations originating from the crystal symmetry. We estimate that the diffraction efficiency for phase conjugation through a sub-wavelength hole can be improved by three to four orders of magnitude by addressing the above-mentioned issues.


42.30.-d 42.40.-i 42.70.Ln 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Ma, B. Catanzaro, J.E. Ford, Y. Fainman, S.H. Lee, Photorefractive holographic lenses applications for dynamic focusing and dynamic image shifting. J. Opt. Soc. Am. A 11, 2471–2480 (1994) CrossRefADSGoogle Scholar
  2. 2.
    W. Liu, D. Psaltis, Pixel size limit in holographic memories. Opt. Lett. 24, 1340–1342 (1999) CrossRefADSGoogle Scholar
  3. 3.
    B.L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, N. Peyghambarian, A polymeric optical pattern recognition system for security verification. Nature 383, 58–60 (1996) CrossRefADSGoogle Scholar
  4. 4.
    Z. Yaqoob, D. Psaltis, M.S. Feld, C. Yang, Optical phase conjugation for turbidity suppression in biological samples. Nature Photonics 2, 110–115 (2008) CrossRefADSGoogle Scholar
  5. 5.
    G. Barbastathis, M. Levene, D. Psaltis, Shift multiplexing with spherical reference waves. Appl. Opt. 35, 2403–2417 (1996) CrossRefADSGoogle Scholar
  6. 6.
    B. Vohnson, S.I. Bozhevolnyi, Holographic approach to phase conjugation of optical near fields. J. Opt. Soc. Am. A 14, 1491–1499 (1997) CrossRefADSGoogle Scholar
  7. 7.
    G. Lerosey, J. Rosney, A. Tourin, M. Fink, Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007) CrossRefADSGoogle Scholar
  8. 8.
    P. Günter, J.-P. Huignard (Eds.), Photorefractive materials and their applications. Springer series in optical sciences, vols. 1–3 (Springer, Berlin, 2005, 2006, 2007) Google Scholar
  9. 9.
    K. Buse, Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods. Appl. Phys. B 64, 273–291 (1997) CrossRefADSGoogle Scholar
  10. 10.
    K. Buse, Light-induced charge transport processes in photorefractive crystals II: Materials. Appl. Phys. B 64, 391–407 (1997) CrossRefADSGoogle Scholar
  11. 11.
    H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber, Photorefractive centers in LiNbO3, studied by optical, Mössbauer, and EPR-methods. Appl. Phys. 12, 355–368 (1977) CrossRefADSGoogle Scholar
  12. 12.
    H. Kogelnik, Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48, 2909–2947 (1969) Google Scholar
  13. 13.
    S. Tao, B. Wang, G.W. Burr, J. Chen, Diffraction efficiency of volume gratings with finite size: corrected analytical solution. J. Mod. Opt. 51, 1115–1122 (2004) MATHADSMathSciNetGoogle Scholar
  14. 14.
    C. Genet, T.W. Ebbesen, Light in tiny holes. Nature 445, 39–46 (2007) CrossRefADSGoogle Scholar
  15. 15.
    H.A. Bethe, Theory of diffraction by small holes. Phys. Rev. 66, 163 (1944) MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    N.V. Kukhtarev, Kinetics of hologram recording and erasure in electrooptic crystals. Sov. Tech. Phys. Lett. 2, 438–440 (1976) Google Scholar
  17. 17.
    F. Kalkum, K. Peithmann, K. Buse, Dynamics of holographic recording with focused beams in iron-doped lithium niobate crystals. Opt. Express 17, 1321–1329 (2009) CrossRefADSGoogle Scholar
  18. 18.
    M. Jazbinsek, M. Zgonik, Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics. Appl. Phys. B 74, 407–414 (2002) CrossRefADSGoogle Scholar
  19. 19.
    K. Peithmann, A. Wiebrock, K. Buse, Photorefractive properties of highly-doped lithium niobate crystals in the visible near-infrared. Appl. Phys. B 68, 777–784 (1999) CrossRefADSGoogle Scholar
  20. 20.
    S. Odoulov, Spatially oscillating photovoltaic current in iron-doped lithium niobate crystals. JETP Lett. 35, 10–13 (1982) ADSGoogle Scholar
  21. 21.
    G. Montemezzani, M. Zgonik, Light diffraction at mixed phase and absorption gratings in anistrotropic media for arbitrary geometry. Phys. Rev. E 55, 1035–1047 (1996) CrossRefADSGoogle Scholar
  22. 22.
    G.J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, F. Havermeyer, Volume holographic grating wavelength stabilized laser diodes. IEEE J. Sel. Top. Quantum Electron. 13, 672–678 (2007) CrossRefGoogle Scholar
  23. 23.
    B.L. Volodin, S.V. Dolgy, E.D. Melnik, E. Downs, J. Shaw, V.S. Ban, Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings. Opt. Lett. 29, 1891–1893 (2004) CrossRefADSGoogle Scholar
  24. 24.
    T.Y. Chung, A. Rapaport, V. Smirnov, L.B. Glebov, M.C. Richardson, M. Bass, Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror. Opt. Lett. 31, 229–231 (2006) CrossRefADSGoogle Scholar
  25. 25.
    S.J. Zilker, T. Bieringer, D. Haarer, R.S. Stein, J.W. van Egmond, S.G. Kostromine, Holographic data storage in amorphous polymers. Adv. Mater. 10, 855–859 (1998) CrossRefGoogle Scholar
  26. 26.
    R. Hagen, T. Bieringer, Photoaddressable Polymers for optical data storage. Adv. Mater. 13, 1805–1810 (2001) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of BonnBonnGermany

Personalised recommendations