Applied Physics B

, Volume 94, Issue 4, pp 673–680 | Cite as

Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor

  • N. Petra
  • J. Zweck
  • A. A. Kosterev
  • S. E. Minkoff
  • D. Thomazy
Article

Abstract

Quartz-enhanced photoacoustic spectroscopy (QEPAS) sensors are based on a recent approach to photoacoustic detection which employs a quartz tuning fork as an acoustic transducer. These sensors enable detection of trace gases for air quality monitoring, industrial process control, and medical diagnostics. To detect a trace gas, modulated laser radiation is directed between the tines of a tuning fork. The optical energy absorbed by the gas results in a periodic thermal expansion which gives rise to a weak acoustic pressure wave. This pressure wave excites a resonant vibration of the tuning fork thereby generating an electrical signal via the piezoelectric effect. This paper describes a theoretical model of a QEPAS sensor. By deriving analytical solutions for the partial differential equations in the model, we obtain a formula for the piezoelectric current in terms of the optical, mechanical, and electrical parameters of the system. We use the model to calculate the optimal position of the laser beam with respect to the tuning fork and the phase of the piezoelectric current. We also show that a QEPAS transducer with a particular 32.8 kHz tuning fork is 2–3 times as sensitive as one with a 4.25 kHz tuning fork. These simulation results closely match experimental data.

PACS

42.62.Fi 43.38.Zp 43.38.Fx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F.K. Tittel, R.F. Curl, Appl. Phys. B 90(2), 165 (2007) CrossRefADSGoogle Scholar
  2. 2.
    M.R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, F.K. Tittel, J. Breath Res. 1, 014001–014013 (2007) CrossRefADSGoogle Scholar
  3. 3.
    T.H. Risby, S.F. Solga, Appl. Phys. B 85(2–3), 421 (2006) CrossRefADSGoogle Scholar
  4. 4.
    A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, F.K. Tittel, Opt. Lett. 27(21), 1902 (2002) CrossRefADSGoogle Scholar
  5. 5.
    A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, I.V. Morozov, Rev. Sci. Instrum. 76(4), 0431051 (2005) CrossRefGoogle Scholar
  6. 6.
    R. Lewicki, G. Wysocki, A.A. Kosterev, F.K. Tittel, Appl. Phys. B 87(1), 157 (2007) CrossRefADSGoogle Scholar
  7. 7.
    S.H. Yönak, D.R. Dowling, J. Acoust. Soc. Am. 114(6), 3167 (2003) CrossRefADSGoogle Scholar
  8. 8.
    A. Miklos, Z. Bozoki, Y. Jiang, M. Feher, Appl. Phys. B 58, 483 (1994) CrossRefADSGoogle Scholar
  9. 9.
    A. Miklos, P. Hess, Z. Bozoki, Rev. Sci. Instrum. 72(4), 1937 (2001) CrossRefADSGoogle Scholar
  10. 10.
    K. Karraï, R.D. Grober, Ultramicroscopy 61(1), 197 (1995) CrossRefGoogle Scholar
  11. 11.
    K. Karraï, R.D. Grober, Appl. Phys. Lett. 66(14), 1842 (1995) CrossRefADSGoogle Scholar
  12. 12.
    R.D. Grober, J. Acimovic, J. Schuck, D. Hessman, P.J. Kindlemann, J. Hespanha, S.A. Morse, K. Karraï, I. Tiemann, S. Manus, Rev. Sci. Instrum. 71(7), 2776 (2000) CrossRefADSGoogle Scholar
  13. 13.
    M.D. Wojcik, M.C. Phillips, B.D. Cannon, M.S. Taubman, Appl. Phys. B 11(2–3), 307 (2006) CrossRefADSGoogle Scholar
  14. 14.
    P.M. Morse, K.U. Ingard, Theoretical Acoustics (Princeton University Press, Princeton, 1986) Google Scholar
  15. 15.
    M.A. Pinsky, Partial Differential Equations and Boundary Value Problems with Applications (McGraw-Hill, New York, 1991) Google Scholar
  16. 16.
    A. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1974) Google Scholar
  17. 17.
    D.V. Serebryakov, A.P. Cherkun, B.A. Loginov, V.S. Letokhov, Rev. Sci. Instrum. 73(4), 1795 (2002) CrossRefADSGoogle Scholar
  18. 18.
    C.R. Wylie, Advanced Engineering Mathematics (McGraw-Hill, New York, 1966) MATHGoogle Scholar
  19. 19.
    A.P. French, Vibrations and Waves (Norton, New York, 1971) Google Scholar
  20. 20.
    M.E. Webber, D.S. Baer, R.K. Hanson, Appl. Opt. 40(12), 2031 (2001) CrossRefADSGoogle Scholar
  21. 21.
    G. Gorelik, Dokl. Akad. Nauk SSSR 54, 779 (1946) (in Russian) Google Scholar
  22. 22.
    F.E. Hovis, C.B. Moore, J. Chem. Phys. 69, 4947 (1978) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • N. Petra
    • 1
  • J. Zweck
    • 1
  • A. A. Kosterev
    • 2
  • S. E. Minkoff
    • 1
  • D. Thomazy
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of Maryland, Baltimore CountyBaltimoreUSA
  2. 2.Department of Electrical and Computer EngineeringRice UniversityHoustonUSA

Personalised recommendations