Applied Physics B

, Volume 95, Issue 2, pp 323–328

High-repetition-rate high-beam-quality 43 W ultraviolet laser with extra-cavity third harmonic generation



High-power, high-repetition-rate extra-cavity third harmonic generation of 355 nm with high beam quality has been developed. The acoustic-optical Q-switched Nd:YVO4 MOPA laser including 2- and 4-stage amplifiers was used as the IR source. With the extra-cavity frequency conversion of LBO crystals, 30.2 W TEM00-mode 355 nm UV laser was obtained with a 2-stage amplifier MOPA laser, and the optical-to-optical (1064 nm to 355 nm) conversion efficiency was up to 30%. Enhanced 43 W TEM00 UV laser at 60 kHz was achieved with a 4-stage amplifier MOPA IR laser, and pulse duration was 10.7 ns corresponding to the peak power as high as 67 kW, with single pulse energy of 0.72 mJ. The optical–optical efficiencies from IR and diodes to UV were 28% and 10% respectively.


42.55.Xi 42.65.Ky 42.60.Gd 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Yoshimura, K. Murase, T. Kamimura, K. Nakai, Y.K. Yap, Y. Mori, T. Sasaki, Y. Matsumoto, Y. Okada, in Advanced Solid-State Lasers, ed. by M. Fejer, H. Injeyan, U. Keller. OSA Trend in Optics and Photonics Series, vol. 26 (Opt. Soc. America, Boston, 1999), p. 112 Google Scholar
  2. 2.
    C.X. Wang, G.Y. Wang, A.V. Hicks, D.R. Dudley, H.Y. Pang, N. Hodgson, in The International Society for Optical Engineering, vol. 6100 (SPIE, Bellingham, 2006), p. 610019 Google Scholar
  3. 3.
    D. Rajesh, M. Yoshimura, T. Eiro, Y. Mori, T. Sasaki, R. Jayavel, T. Kamimura, T. Katsura, T. Kojima, J. Nishimae, K. Yasui, Opt. Mater. 31, 461 (2008) CrossRefADSGoogle Scholar
  4. 4.
    T. Kojima, S. Konno, S. Fujikawa, K. Yasui, K. Yoshizawa, Y. Mori, T. Sasaki, M. Tanaka, Y. Okada, Opt. Lett. 25, 58 (2000) CrossRefADSGoogle Scholar
  5. 5.
    G.L. Wang, A.C. Geng, Y. Bo, H.Q. Li, Z.P. Sun, Y. Bi, D.F. Cui, Z.Y. Xu, X. Yuan, X.Q. Wang, G.Q. Shen, D.Z. Shen, Opt. Commun. 259, 820 (2006) CrossRefADSGoogle Scholar
  6. 6.
    Y.C. Wu, F. Chang, P.Z. Fu, C.T. Chen, G.L. Wang, A.C. Geng, Y. Bo, D.F. Cui, Z.Y. Xu, Chin. Phys. Lett. 22, 1426 (2005) CrossRefADSGoogle Scholar
  7. 7.
    F.Q. Jia, Q. Zheng, Q.H. Xue, Y.K. Bu, L.S. Qian, Appl. Opt. 46, 2975 (2007) CrossRefADSGoogle Scholar
  8. 8.
    R.S. Craxton, Opt. Commun. 34, 474 (1980) CrossRefADSGoogle Scholar
  9. 9.
    X.M. Liu, D.J. Li, P. Shi, C.R. Haas, A. Schell, N.L. Wu, K.M. Du, Opt. Commun. 272, 192 (2007) CrossRefADSGoogle Scholar
  10. 10.
    Q. Liu, X. Yan, M. Gong, X. Fu, D. Wang, Opt. Express 16, 14335 (2008) CrossRefADSGoogle Scholar
  11. 11.
    X. Yan, Q. Liu, X. Fu, Y. Wang, L. Huang, D. Wang, M. Gong, Opt. Express 16, 3356 (2008) CrossRefADSGoogle Scholar
  12. 12.
    F. He, L. Huang, M.L. Gong, Q. Liu, X. Yan, Laser Phys. Lett. 4, 511 (2007) CrossRefGoogle Scholar
  13. 13.
    L.E. Halliburton, M.P. Scripsick, in Solid State Lasers and Nonlinear Crystals, vol. 2379 (SPIE, Bellingham, 1995), p. 235 Google Scholar
  14. 14.
    L. Gang, The Conversion and Scaling for Lasers Frequency: The Practical Nonlinear Optics Technology (Science Press, Beijing, 2005) Google Scholar
  15. 15.
    L. Shujie, S. Zhaoyang, W. Bochang, C. Chuangtian, J. Appl. Phys. 67, 634 (1990) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Tribology, Center for Photonics and Electronics, Department of Precision InstrumentsTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations