Applied Physics B

, 96:201 | Cite as

The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance

  • M. Wirth
  • A. Fix
  • P. Mahnke
  • H. Schwarzer
  • F. Schrandt
  • G. Ehret
Article

Abstract

A high-performance airborne water vapor differential absorption lidar has been developed during the past years. This system uses a four-wavelength/three-absorption line measurement scheme in the 935 nm H2O absorption band to cover the whole troposphere and lower stratosphere simultaneously. Additional high spectral resolution aerosol and depolarization channels allow precise aerosol characterization. This system is intended to demonstrate a future space-borne instrument. For the first time, it realizes an output power of up to 12 W at a high wall-plug efficiency using diode-pumped solid-state lasers and nonlinear conversion techniques. Special attention was given to a rugged optical layout. This paper describes the system layout and technical realization. Key performance parameters are given for the different subsystems.

PACS

42.65.Yj 42.68.Wt 92.60.Jq 

References

  1. 1.
    L. Bengtsson, K.I. Hodges, S. Hagemann, Tellus A 56, 202–217 (2004) CrossRefADSGoogle Scholar
  2. 2.
    É. Gérard, D.G.H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, P. Di Girolamo, BAMS 85, 237–251 (2004) CrossRefADSGoogle Scholar
  3. 3.
    R.M. Schotland, J. Appl. Meteor. 13, 71–77 (1974) CrossRefGoogle Scholar
  4. 4.
    J. Bösenberg, Appl. Opt. 37, 3845–3860 (1998) CrossRefADSGoogle Scholar
  5. 5.
    W.B. Grant, Opt. Eng. 30, 40–48 (1991) CrossRefADSGoogle Scholar
  6. 6.
    E.V. Browell, S. Ismail, W.B. Grant, Appl. Phys. B 67, 399–410 (1998) CrossRefADSGoogle Scholar
  7. 7.
    S. Ismail, E. Browell, Appl. Opt. 28, 3603–3615 (1998) CrossRefADSGoogle Scholar
  8. 8.
    L.S. Rothman , J. Quantum Spectrosc. Radiat. Transf. 96, 139–204 (2005) CrossRefADSGoogle Scholar
  9. 9.
    ESA, Report for Mission Selection: WALES—Water Vapour Lidar Experiment in Space. ESA SP 1279 (3), ISBN 92-9092-962-6 (2004) Google Scholar
  10. 10.
    V. Wulfmeyer, H. Bauer, P. Di Girolamo, C. Serio, Remote Sens. Environ. 95, 211–230 (2005) CrossRefGoogle Scholar
  11. 11.
    P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, G. Ehret, Remote Sens. Environ. 112, 1552–1568 (2008) CrossRefGoogle Scholar
  12. 12.
    V. Wulfmeyer, A. Behrendt, H.-S. Bauer, C. Kottmeier, U. Corsmeier, A. Blyth, G. Craig, U. Schumann, M. Hagen, S. Crewell, P. Di Girolamo, C. Flamant, M. Miller, A. Montani, S. Mobbs, E. Richard, M.W. Rotach, M. Arpagaus, H. Russchenberg, P. Schlüssel, M. König, V. Gärtner, R. Steinacker, M. Dorninger, D.D. Turner, T. Weckwerth, A. Hense, C. Simmer, BAMS 89, 1477–1468 (2008) CrossRefADSGoogle Scholar
  13. 13.
    M. Esselborn, M. Wirth, A. Fix, P. Mahnke, G. Ehret, in Proceedings of the 24th International Laser Radar Conference, Boulder, CO (USA), 2008, pp. 357–360. ISBN 987-0-615-21489-4 Google Scholar
  14. 14.
    A. Fix, M. Wirth, M. Esselborn, A. Amediek, P. Mahnke, S. Rahm, R. Simmet, A. Schäfler, C. Kiemle, A. Dörnbrack, G. Ehret, in Proceedings of the 24th International Laser Radar Conference, Boulder, CO (USA), 2008, pp. 1005–1009. ISBN 987-0-615-21489-4 Google Scholar
  15. 15.
    G. Ehret, K.P. Hoinka, J. Stein, A. Fix, C. Kiemle, G. Poberaj, J. Geophys. Res. 104, 31351–31359 (1999) CrossRefADSGoogle Scholar
  16. 16.
    G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, G. Ehret, Appl. Phys. B 75, 165–172 (2002) CrossRefADSGoogle Scholar
  17. 17.
    I. Freitag, A. Tünnermann, H. Welling, Opt. Lett. 22, 706–708 (1997) CrossRefADSGoogle Scholar
  18. 18.
    M. Esselborn, M. Wirth, A. Fix, M. Tesche, G. Ehret, Appl. Opt. 47, 346–358 (2008) CrossRefADSGoogle Scholar
  19. 19.
    S. Gerstenkorn, P. Luc, Atlas du Spectre D’Asorption de la Molecule D’Iode, Atlas III (CNRS, Paris, 1978) Google Scholar
  20. 20.
    M.S. Fee, K. Danzmann, S. Chu, Phys. Rev. A 45, 4911–4924 (1992) CrossRefADSGoogle Scholar
  21. 21.
    S. Gangopadhyay, N. Melikechi, E.E. Eyler, J. Opt. Soc. Am. B 11, 231–241 (1994) CrossRefADSGoogle Scholar
  22. 22.
    T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, R. Treichel, Appl. Phys. B 87, 437–444 (2007) CrossRefADSGoogle Scholar
  23. 23.
    R. Fluck, M.R. Hermann, L.A. Hackel, Appl. Phys. B 70, 491–498 (2000) CrossRefADSGoogle Scholar
  24. 24.
    Lasers and laser-related equipment—test methods for laser beam parameters—beam widths, divergence angle and beam propagation factor. ISO11146, International Organization for Standardization (1999) Google Scholar
  25. 25.
    M. Ostermeyer, G. Klemz, P. Kubina, R. Menzel, Appl. Opt. 41, 7573–7582 (2002) CrossRefADSGoogle Scholar
  26. 26.
    M. Ostermeyer, P. Knappe, R. Menzel, V. Wulfmeyer, Appl. Opt. 44, 582–590 (2005) CrossRefADSGoogle Scholar
  27. 27.
    B. Boulanger, M.M. Fejer, R. Blachman, P.F. Bordui, Appl. Phys. Lett. 65, 2401–2403 (1994) CrossRefADSGoogle Scholar
  28. 28.
    P. Mahnke, H. Klingenberg, A. Fix, M. Wirth, Appl. Phys. B 89, 1–7 (2007) CrossRefADSGoogle Scholar
  29. 29.
    G. Anstett, A. Borsutzky, R. Wallenstein, Appl. Phys. B 76, 541–545 (2003) CrossRefADSGoogle Scholar
  30. 30.
    G. Anstett, M. Nittmann, R. Wallenstein, Appl. Phys. B 79, 305–313 (2004) Google Scholar
  31. 31.
    A.V. Smith, M.S. Bowers, J. Opt. Soc. Am. B 18, 706–713 (2001) CrossRefADSGoogle Scholar
  32. 32.
    A.V. Smith, D.J. Armstrong, J. Opt. Soc. Am. B 19, 1801–1814 (2002) CrossRefADSGoogle Scholar
  33. 33.
    D.J. Armstrong, A.V. Smith, Opt. Lett. 31, 380–382 (2006) CrossRefADSGoogle Scholar
  34. 34.
    G. Arisholm, O. Nordseth, G. Rustad, Opt. Express 12, 4189–4197 (2004) CrossRefADSGoogle Scholar
  35. 35.
    C.J. Grund, R.M. Banta, J.L. George, J.N. Howell, M.J. Post, R.A. Richter, A.M. Weickmann, J. Ocean. Atmos. Technol. 18, 376–393 (2001) CrossRefADSGoogle Scholar
  36. 36.
    R.T. White, Y. He, B.J. Orr, M. Kono, K.G.H. Baldwin, J. Opt. Soc. Am. B 21, 1577–1585 (2004) CrossRefADSGoogle Scholar
  37. 37.
    R.T. White, Y. He, B.J. Orr, M. Kono, K.G.H. Baldwin, J. Opt. Soc. Am. B 21, 1586–1594 (2004) CrossRefADSGoogle Scholar
  38. 38.
    R.T. White, Y. He, B.J. Orr, M. Kono, K.G.H. Baldwin, Opt. Express 12, 5655–5660 (2004) CrossRefADSGoogle Scholar
  39. 39.
    R.T. White, Y. He, B.J. Orr, M. Kono, K.G.H. Baldwin, J. Opt. Soc. Am. B 24, 2601–2609 (2007) CrossRefADSGoogle Scholar
  40. 40.
    A. Fix, R. Wallenstein, J. Opt. Soc. Am. B 13, 2484–2497 (1996) CrossRefADSGoogle Scholar
  41. 41.
    G. Anstett, R. Wallenstein, Appl. Phys. B 79, 827–836 (2004) CrossRefADSGoogle Scholar
  42. 42.
    L.A. Rahn, Appl. Opt. 24, 940–942 (1985) CrossRefADSGoogle Scholar
  43. 43.
    S.W. Henderson, E.H. Yuen, E.S. Fry, Opt. Lett. 11, 715–718 (1986) CrossRefADSGoogle Scholar
  44. 44.
    V. Wulfmeyer, M. Randall, A. Brewer, R.M. Hardesty, Opt. Lett. 25, 1228–1230 (2000) CrossRefADSGoogle Scholar
  45. 45.
    M. Kamp, J. Hofmann, A. Forchel, F. Schäfer, J.P. Reithmaier, Appl. Phys. Lett. 74, 483–485 (1999) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • M. Wirth
    • 1
  • A. Fix
    • 1
  • P. Mahnke
    • 2
  • H. Schwarzer
    • 3
  • F. Schrandt
    • 3
  • G. Ehret
    • 1
  1. 1.Deutsches Zentrum für Luft- und Raumfahrt (DLR)Institut für Physik der AtmosphäreWesslingGermany
  2. 2.Deutsches Zentrum für Luft- und Raumfahrt (DLR)Institut für Technische PhysikStuttgartGermany
  3. 3.Deutsches Zentrum für Luft- und Raumfahrt (DLR)Institut für Robotik und MechatronikBerlinGermany

Personalised recommendations