Applied Physics B

, Volume 94, Issue 4, pp 661–666 | Cite as

Electrically controlled second harmonic generation of circular polarization in a single LiNbO3 optical superlattice

Article

Abstract

We demonstrate theoretically that a linearly polarized fundamental frequency wave (FW) can be effectively converted into a circularly polarized frequency doubling one in a single LiNbO3 optical supperlattice (OSL) by applying an appropriate electric field. The numerical results show that at 30°C, for a single OSL with a 91.235 V/mm applied electric field, a 100 MW/cm2 and 1064 nm laser beam can be converted into a right-handed circularly polarized (RHCP) light at 10 mm or a left-handed circularly polarized (LHCP) light at 25.747 mm. The quasi-periodic domain optimized process for minimizing the applied electric field can be obtained by changing the structural parameter, e.g., the positive or negative domain length of the OSL. It is also found that the generation of the second harmonic (SH) circularly polarized light (CPL) is insensitive to the fabrication errors of domains of the OSL; moreover, the bandwidth of conversion efficiency from the e-polarized FW to SH CPL is about 0.062 nm corresponding to a 60.85 ps FW pulse.

PACS

42.65.ky 78.20.jq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.P.M. Huck, W. Jager, B. Lange, B. Feringa, Science 273, 1686 (1996) CrossRefADSGoogle Scholar
  2. 2.
    C. Wang, H. Fei, Y. Qiu, Y. Yang, Z. Wei, Y. Tian, Y. Chen, Y. Zhao, Appl. Phys. Lett. 74, 19 (1999) CrossRefGoogle Scholar
  3. 3.
    S.H. Chen, D. Katsis, A.W. Schmid, J.C. Mastrangelo, T. Tsutsui, T.N. Blanton, Nature 397, 506 (1999) CrossRefADSGoogle Scholar
  4. 4.
    M.M. Bouman, E.W. Meijer, Adv. Mater 7, 385 (1995) CrossRefGoogle Scholar
  5. 5.
    R. Arnold, E. Woodbridge, G. Smith, G. Taylor, R. Trissel, R. Feldmann, R. Gill, SPIE 3266, 178 (1998) CrossRefGoogle Scholar
  6. 6.
    M.P. Silverman, W. Strange, Opt. Commun. 144, 7 (1997) CrossRefADSGoogle Scholar
  7. 7.
    A.H. Hielscher, A.A. Eick, J.R. Mourant, J.P. Freyer, I.J. Bigio, Proc. SPIE 2976, 298 (1997) CrossRefADSGoogle Scholar
  8. 8.
    M.P. Silverman, W. Strange, J. Badoz, I.A. Vitkin, Opt. Commun. 132, 410 (1996) CrossRefADSGoogle Scholar
  9. 9.
    N. Theofanous, IEEE J. Quantum Electron. 31, 1315 (1995) CrossRefADSGoogle Scholar
  10. 10.
    J. Yang, Q. Zhou, X. Jiang, M. Wang, R.T. Chen, IEEE Photon. Technol. Lett. 16, 96 (2004) CrossRefGoogle Scholar
  11. 11.
    J.A. Armstrong, N. Bloembergen, J. Ducuing, P.S. Pershan, Phys. Rev. 127, 1918 (1962) CrossRefADSGoogle Scholar
  12. 12.
    L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, J.W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995) CrossRefADSGoogle Scholar
  13. 13.
    A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, D. Eger, Opt. Commun. 142, 265 (1997) CrossRefADSGoogle Scholar
  14. 14.
    S.N. Zhu, Y.Y. Zhu, N.B. Ming, Science 278, 843 (1997) CrossRefADSGoogle Scholar
  15. 15.
    C. Zhang, H. Wei, Y.Y. Zhu, H.T. Wang, S.N. Zhu, N.B. Ming, Opt. Lett. 26, 899 (2001) CrossRefADSGoogle Scholar
  16. 16.
    G.Z. Luo, S.N. Zhu, J.L. He, Y.Y. Zhu, H.T. Wang, Z.W. Liu, C. Zhang, N.B. Ming, Appl. Phys. Lett. 78, 3006 (2001) CrossRefADSGoogle Scholar
  17. 17.
    Y. Lu, J. Zheng, Y. Lu, N. Ming, Z. Xu, Appl. Phys. Lett. 74, 123 (1999) CrossRefGoogle Scholar
  18. 18.
    Y.Q. Lu, Z.L. Wan, Q. Wang, Y.X. Xi, N.B. Ming, Appl. Phys. Lett. 77, 3719 (2000) CrossRefADSGoogle Scholar
  19. 19.
    G. Zheng, H. Wang, W. She, Opt. Express 14, 5535 (2006) CrossRefADSGoogle Scholar
  20. 20.
    S.T. Lin, G.W. Chang, Y.Y. Lin, Y.C. Huang, A.C. Chiang, Y.H. Chen, Opt. Express 15, 17093 (2007) CrossRefADSGoogle Scholar
  21. 21.
    G.L. Zheng, W.L. She, Appl. Phys. B 88, 545 (2007) CrossRefADSGoogle Scholar
  22. 22.
    C.Y. Huang, C.H. Lin, Y.H. Chen, Y.C. Huang, Opt. Express 15, 2548 (2007) CrossRefADSGoogle Scholar
  23. 23.
    F. Généreux, G. Baldenberger, B. Bourliaguet, R. Vallée, Opt. Lett. 32, 1108 (2007) CrossRefADSGoogle Scholar
  24. 24.
    K.W. Chang, A.C. Chiang, T.C. Lin, B.C. Wong, Y.H. Chen, Y.C. Huang, Opt. Commun. 203, 163 (2002) CrossRefADSGoogle Scholar
  25. 25.
    Y.H. Chen, F.C. Fan, Y.Y. Lin, Y.C. Huang, J.T. Shy, Y.P. Lan, Y.F. Chen, Opt. Commun. 223, 417 (2003) CrossRefADSGoogle Scholar
  26. 26.
    C.P. Huang, Y.H. Wang, Y.Y. Zhu, Appl. Opt. 44, 4980 (2005) CrossRefADSGoogle Scholar
  27. 27.
    C.P. Huang, Q.J. Wang, Y.Y. Zhu, Appl. Phys. B 80, 741 (2005) CrossRefADSGoogle Scholar
  28. 28.
    D. Huang, W.L. She, Opt. Express 15, 8275 (2007) CrossRefADSGoogle Scholar
  29. 29.
    Y. Kong, X. Chen, Y. Xia, Appl. Phys. B 91, 479 (2008) CrossRefADSGoogle Scholar
  30. 30.
    G.J. Edwards, M. Lawrence, Opt. Quantum Electron. 16, 373 (1984) CrossRefGoogle Scholar
  31. 31.
    K. Fradkin-Kashi, A. Arie, IEEE J. Quantum Electron. 35, 1649 (1999) CrossRefGoogle Scholar
  32. 32.
    R.K.P. Zia, W.J. Dallas, J. Phys. A 18, L341 (1985) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Optoelectronic Materials and TechnologiesSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations