Applied Physics B

, Volume 95, Issue 4, pp 813–824

Performance evaluation of a near infrared QEPAS based ethylene sensor



A sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was evaluated for the detection of trace levels of ethylene at atmospheric pressure using a fiber coupled DFB diode laser emitting in the 1.62 µm spectral range. A noise-equivalent QEPAS signal of ∼4 ppm C2H4 was achieved for a 0.7 s data acquisition time using wavelength-modulation with a second-harmonic detection scheme on the strongest C2H4 absorption peak at 6177.14 cm−1 with an average optical power of ∼15 mW. Improved detection sensitivity of 0.5 and 0.3 ppm C2H4 (1σ) was demonstrated using longer averaging time of 70 and 700 s, respectively. Important characteristics for the QEPAS based sensor operation in real-world conditions are presented, particularly the influence of external temperature variations. Furthermore, the response time of the ethylene sensor was measured in different configurations and it is shown that the QEPAS technique can provide a response time in a few seconds range even without active gas flow.


42.62.Fi 42.55.Px 33.20.Ea 78.20.Hp 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.A. Kosterev, Y.U. Bakhirkin, R.F. Curl, F.K. Tittel, Quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 27(21), 1902–1904 (2002) CrossRefADSGoogle Scholar
  2. 2.
    A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, I.V. Morozov, Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum. 76, 043105 (2005) CrossRefADSGoogle Scholar
  3. 3.
    A.K.Y. Ngai, S.T. Persijni, D. Lindsay, A.A. Kosterev, P. Groß, C.J. Lee, S.M. Cristescu, F.K. Tittel, K.-J. Boller, F.J.M. Harren, Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing. Appl. Phys. B 89, 123–128 (2007) CrossRefADSGoogle Scholar
  4. 4.
    A.A. Kosterev, F.K. Tittel, Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser. Appl. Opt. 43(33), 6213–6217 (2004) CrossRefADSGoogle Scholar
  5. 5.
    G. Wysocki, A.A. Kosterev, F.K. Tittel, Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ=2 µm. Appl. Phys. B 85(2–3), 301–306 (2006) CrossRefADSGoogle Scholar
  6. 6.
    A.A. Kosterev, T.S. Mosely, F.K. Tittel, Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN. Appl. Phys. B 85(2–3), 295–300 (2006) CrossRefADSGoogle Scholar
  7. 7.
    A.A. Kosterev, F.K. Tittel, QEPAS based detection of H2S and CO2 using a near-IR DFB diode laser, in 6th International Conference on Tunable Diode Laser Spectroscopy, July 9–13, 2007, Reims, France Google Scholar
  8. 8.
    M.D. Wojcik, M.C. Phillips, B.D. Cannon, M.S. Taubman, Gas-phase photoacoustic sensor at 8.41 µm using quartz tuning forks and amplitude-modulated quantum cascade lasers. Appl. Phys. B 85(2–3), 307–313 (2006) CrossRefADSGoogle Scholar
  9. 9.
    M.C. Phillips, T.L. Myers, M.D. Wojcik, B.D. Cannon, External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features. Opt. Lett. 32(9), 1177–1179 (2006) CrossRefADSGoogle Scholar
  10. 10.
    R. Lewicki, G. Wysocki, A.A. Kosterev, F.K. Tittel, QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 µm. Opt. Express 15(12), 7357–7366 (2007) CrossRefADSGoogle Scholar
  11. 11.
    P. Kluczynski, J. Gustafsson, Å.M. Lindberg, O. Axner, Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals. Spectrochim. Acta, Part B 56, 1277–1354 (2001) CrossRefADSGoogle Scholar
  12. 12.
    S. Schilt, L. Thévenaz, Ph. Robert, Wavelength modulation spectroscopy: combined frequency and intensity laser modulation. Appl. Opt. 42, 6728–6738 (2003) CrossRefADSGoogle Scholar
  13. 13.
    S.W. Sharpe, T.H. Johnson, R.L. Sams, P.M. Chu, G.C. Rhoderick, P.A. Johnson, Gas-phase database for quantitative infrared spectroscopy. Appl. Spectrosc. 58, 1452–1461 (2004) CrossRefADSGoogle Scholar
  14. 14.
    L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, The HITRAN 2004 molecular spectroscopic database. J. Quantum Spectrosc. Radiat. Transf. 96, 139–204 (2005) CrossRefADSGoogle Scholar
  15. 15.
    A. Veres, Z. Bozóki, Á. Mohácsi, M. Szakáll, G. Szabó, External cavity diode laser based photoacoustic detection of CO2 at 1.43 µm: the effect of molecular relaxation. Appl. Spectrosc. 57, 900–905 (2003) CrossRefADSGoogle Scholar
  16. 16.
    S. Schilt, J.-P. Besson, L. Thévenaz, Near-infrared laser photoacoustic detection of methane: the impact of molecular relaxation. Appl. Phys. B 82(2), 319–328 (2006) CrossRefADSGoogle Scholar
  17. 17.
    J.-P. Besson, S. Schilt, L. Thévenaz, Molecular relaxation effects on hydrogen chloride photoacoustic detection. Appl. Phys. B 90(2), 191–196 (2008) CrossRefADSGoogle Scholar
  18. 18.
    A.A. Kosterev, Y.A. Bakhirkin, F.K. Tittel, S. Blaser, Y. Bonetti, L. Hvozdara, Photoacoustic phase shift as a chemically selective spectroscopic parameter. Appl. Phys. B 78, 673–676 (2004) CrossRefADSGoogle Scholar
  19. 19.
    Y.L. Hoo, W. Jin, C. Shi, H.L. Ho, D.N. Wang, S.C. Ruan, Design and modeling of a photonic crystal fiber gas sensor. Appl. Opt. 42(18), 3509–3515 (2003) CrossRefADSGoogle Scholar
  20. 20.
    N. Gayraud, L.W. Kornaszewski, J.M. Stone, J.C. Knight, D.T. Reid, D.P. Hand, W.N. MacPherson, Mid-infrared gas sensing using a photonic bandgap fiber. Appl. Opt. 47(9), 1269–1277 (2008) ADSGoogle Scholar
  21. 21.
    S. Schilt, L. Thévenaz, Wavelength modulation photoacoustic spectroscopy: theoretical description and experimental results. Infrared Phys. Technol. 48(2), 154–162 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.IR Microsystems SA, PSE-CLausanneSwitzerland
  2. 2.Electrical and Computer Engineering DepartmentRice UniversityHoustonUSA

Personalised recommendations