Applied Physics B

, Volume 95, Issue 1, pp 55–61 | Cite as

Ultra-narrow-linewidth continuous-wave THz sources based on multiplier chains

  • S. Schiller
  • B. Roth
  • F. Lewen
  • O. Ricken
  • M. C. Wiedner
Article

Abstract

We demonstrate two different sources at 1.3 THz based on multiplier chains (72nd harmonic generation), which exhibit linewidths at the level of 2×10−12 in relative units. The multiplication processes are shown not to contribute significantly to this linewidth. The phase noise of one of the sources and the fractional power in the carrier (76%) were determined. The application of these sources as references for quantum cascade THz lasers and for spectroscopy of ultracold molecules is suggested. Thus, rotational spectroscopy with few Hz resolution at 1.3 THz is possible with the present easy-to-use sources. An approach for reducing the linewidth by a factor on the order of 103 to the 1×10−15 level using optical technology is proposed.

PACS

33.20.Bx 52.70.Gw 07.57.Hm 07.57.Pt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.C. De Lucia, Spectroscopy in the terahertz spectral region, in Sensing with Terahertz Radiation, ed. by D. Mittleman (Springer, Berlin, 2003), pp. 39–115 Google Scholar
  2. 2.
    S. Brünken, E.A. Michael, F. Lewen, T. Giesen, H. Ozeki, G. Winnewisser, P. Jensen, E. Herbst, High resolution spectrum of CH2: Low N rotational transitions near 2 THz. Can. J. Chem. 82, 676 (2004) CrossRefGoogle Scholar
  3. 3.
    S. Brünken, H.S.P. Müller, F. Lewen, T.F. Giesen, Analysis of the rotational spectrum of methylene (CH2) in its vibronic ground state with an Euler expansion of the Hamiltonian. J. Chem. Phys. 123, 164315 (2005) CrossRefADSGoogle Scholar
  4. 4.
    C. Degli Esposti, L. Bizzocchi, P. Botschwina, K.M.T. Yamada, G. Winnewisser, S. Thorwirth, P. Förster, Vibrationally excited states of HC5N: Millimeter-wave spectroscopy and coupled cluster calculations. J. Mol. Spectrosc. 230, 185 (2005) CrossRefADSGoogle Scholar
  5. 5.
    S. Matsuura, P. Chen, G.A. Blake, J.C. Pearson, H.M. Pickett, A tunable cavity-locked diode laser source for terahertz photomixing. IEEE Trans. Microw. Theory Tech. 48, 380 (2000) CrossRefGoogle Scholar
  6. 6.
    E.A. Michael, B. Vowinkel, R. Schieder, M. Mikulics, M. Marso, P. Kordo, Large-area traveling-wave photonic mixers for increased continuous terahertz power. Appl. Phys. Lett. 86, 111120 (2005) CrossRefADSGoogle Scholar
  7. 7.
    K. Kawase, J. Shikata, H. Ito, Narrow-linewidth tunable terahertz-wave sources using nonlinear optics, in Solid-State Mid-Infrared Laser Sources. Topics in Applied Physics, vol. 89 (2003), pp. 397–423 Google Scholar
  8. 8.
    I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, Y. Ueno, Terahertz-wave generation from quasi-phase-matched GaP for 1.55 μm pumping. Appl. Phys. Lett. 88, 071118 (2006) CrossRefADSGoogle Scholar
  9. 9.
    S. Barbieri, J. Alton, H.E. Beere, E.H. Linfield, D.A. Ritchie, S. Withington, G. Scalari, L. Ajili, J. Faist, Heterodyne mixing of two far-infrared quantum cascade lasers by use of a point-contact Schottky diode. Opt. Lett. 29, 1632 (2004) CrossRefADSGoogle Scholar
  10. 10.
    A. Baryshev, J.N. Hovenier, A.J.L. Adam, I. Kasalynas, J.R. Gao, T.O. Klaassen, B.S. Williams, S. Kumar, Q. Hu, J.L. Reno, Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser. Appl. Phys. Lett. 89, 031115 (2006) CrossRefADSGoogle Scholar
  11. 11.
    H.-W. Hübers, S.G. Pavlov, H. Richter, A.D. Semenov, L. Mahler, A. Tredicucci, H.E. Beere, D.A. Ritchie, High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser. Appl. Phys. Lett. 89, 061115 (2006) CrossRefADSGoogle Scholar
  12. 12.
    J. Kawamura, T.R. Hunter, C.-Y.E. Tong, R. Blundell, D.C. Papa, F. Patt, W. Peters, T.L. Wilson, C. Henkel, G. Gol’tsman, E. Gershenzon, Ground-based terahertz CO spectroscopy towards Orion. Astron. Astrophys. 394, 271 (2002) CrossRefADSGoogle Scholar
  13. 13.
    M.C. Wiedner, G. Wieching, F. Bielau, K. Rettenbacher, N.H. Volgenau, M. Emprechtinger, U.U. Graf, C.E. Honingh, K. Jacobs, B. Vowinkel, K.M. Menten, L.-Å. Nyman, R. Güsten, S. Philipp, D. Rabanus, J. Stutzki, F. Wyrowski, First observations with CONDOR, a 1.5 THz heterodyne receiver. Astron. Astrophys. 454, L33–L36 (2006) CrossRefADSGoogle Scholar
  14. 14.
    J. Hesler, D. Porterfield, W. Bishop, T. Crowe, A. Baryshev, R. Hesper, J. Baselmans, Development and characterization of an easy-to-use THz source, in Proc. 16th International Symposium on Space Terahertz Technology, Goteborg, Sweden, 3 May 2005 Google Scholar
  15. 15.
    P. Blythe, B. Roth, H. Daerr, S. Schiller, Production of ultracold trapped molecular hydrogen ions. Phys. Rev. Lett. 95, 183002 (2005) CrossRefADSGoogle Scholar
  16. 16.
    V. Korobov, Relativistic corrections of m α 6 order to the ro-vibrational spectrum of H2+ and HD+ molecular ions. Phys. Rev. A 77, 022509 (2008) CrossRefADSGoogle Scholar
  17. 17.
    O. Asvany, O. Ricken, H.S. Müller, M.C. Wiedner, T.F. Giesen, S. Schlemmer, High-resolution rotational spectroscopy in a cold ion trap: H2D+ and D2H+. Phys. Rev. Lett. 100, 233004 (2008) CrossRefADSGoogle Scholar
  18. 18.
    P.P. Muñoz, S. Bedorf, M. Brandt, T. Tils, N. Honingh, K. Jacobs, Fabrication and characterization of phonon-cooled hot-electron bolometers on freestanding 2-μm silicon nitride membranes for THz applications. Proc. SPIE 5498, 834 (2004) CrossRefADSGoogle Scholar
  19. 19.
    G. Santarelli et al., The PHARAO time and frequency performance verification system, in Proceedings of the 2004 IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference (IEEE, 2004), pp. 785–789 Google Scholar
  20. 20.
    J. de Vicente, private communication, 2007 Google Scholar
  21. 21.
    J.J. McFerran, E.N. Ivanov, A. Bartels, G. Wilpers, C.W. Oates, S.A. Diddams, L. Hollberg, Low-noise synthesis of microwave signals from an optical source. Electron. Lett. 41, 36–37 (2005) CrossRefGoogle Scholar
  22. 22.
    A.D. Ludlow, X. Huang, M. Notcutt, T. Zanon, S.M. Foreman, M.M. Boyd, S. Blatt, J. Ye, Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15. Opt. Lett. 32, 641–643 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • S. Schiller
    • 1
  • B. Roth
    • 1
  • F. Lewen
    • 2
  • O. Ricken
    • 2
  • M. C. Wiedner
    • 2
  1. 1.Institut für ExperimentalphysikHeinrich-Heine Universität DüsseldorfDüsseldorfGermany
  2. 2.I. Physikalisches InstitutUniversität zu KölnKölnGermany

Personalised recommendations