Advertisement

Applied Physics B

, Volume 94, Issue 1, pp 39–49 | Cite as

Molecular dynamics simulations of translational thermal accommodation coefficients for time-resolved LII

  • K. J. Daun
  • G. J. Smallwood
  • F. Liu
Article

Abstract

Time-resolved laser-induced incandescence demands precise knowledge of the thermal accommodation coefficient, but little is known about the gas-surface scattering physics that underlies this parameter. This paper presents a molecular dynamics simulation that shows how the thermal accommodation coefficient is influenced by the gas molecular mass and gas temperature. The molecular dynamics results also define scattering kernels that can be used as boundary conditions in Direct Simulation Monte Carlo simulations of heat and momentum transfer between soot aggregates and surrounding gas molecules.

PACS

47.70.Pq 42.68.Jg 47.45.Dt 42.62.-b 65.80.+n 02.70.Ns 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.D. Maynard, E.D. Kuempel, J. Nanoparticle Res. 7, 587 (2005) CrossRefGoogle Scholar
  2. 2.
    G. Oberdörster, E. Oberdörster, J. Oberdörster, J. Environ. Heal. Perspectives 113, 823 (2005) CrossRefGoogle Scholar
  3. 3.
    M.Z. Jackobson, J. Geophys. Res. (2004). doi: 10.1029/2004JD004945 Google Scholar
  4. 4.
    D.G. Streets, Y. Wu, M. Chin, Geophys. Res. Lett. (2006). doi: 10.1029/2006GL026471 Google Scholar
  5. 5.
    R. Viskanta, M.P. Menguç, Prog. Energy Combust. Sci. 13, 97 (1987) CrossRefADSGoogle Scholar
  6. 6.
    F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Int. J. Heat Mass Transf. 49, 777 (2006) CrossRefGoogle Scholar
  7. 7.
    S.-A. Kuhlmann, J. Reimann, S. Will, J. Aerosol Sci. 37, 1696 (2006) CrossRefGoogle Scholar
  8. 8.
    J.C. Maxwell, Philos. Trans. R. Soc. 170, 231 (1879) CrossRefGoogle Scholar
  9. 9.
    M. Knudsen, Ann. Phys. 32, 205 (1910) Google Scholar
  10. 10.
    T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, App. Opt. 42, 2021 (2003) CrossRefADSGoogle Scholar
  11. 11.
    R. Starke, B. Kock, R. Roth, Shock Waves 12, 351–360 (2003) CrossRefADSGoogle Scholar
  12. 12.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004) CrossRefGoogle Scholar
  13. 13.
    A.V. Eremin, E.V. Gurentsov, M. Hofmann, B.F. Kock, C. Schulz, Appl. Phys. B 83, 449 (2006) CrossRefADSGoogle Scholar
  14. 14.
    K.J. Daun, G.J. Smallwood, F. Liu, J. Heat Transf. 130, 121202 (2008) Google Scholar
  15. 15.
    C. Cercignani, M. Lampis, Theory Stat. Phys. 1, 101 (1971) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    R.G. Lord, Phys. Fluids A 3, 706 (1991) MATHCrossRefADSGoogle Scholar
  17. 17.
    D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.L. Bachelo, Appl. Opt. 44, 6773 (2005) CrossRefADSGoogle Scholar
  18. 18.
    K. Tian, F. Liu, K.A. Thomson, D.R. Snelling, G.J. Smallwood, D. Wang, Combust. Flame 138, 195 (2004) CrossRefGoogle Scholar
  19. 19.
    Ü.Ö. Köylü, C.S. McEnally, D.E. Rosner, L.D. Pfefferle, Combust. Flame 110, 494 (1997) CrossRefGoogle Scholar
  20. 20.
    F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 383 (2006) CrossRefADSGoogle Scholar
  21. 21.
    A.V. Filippov, D.E. Rosner, Int. J. Heat Mass Transf. 43, 127 (2000) MATHCrossRefGoogle Scholar
  22. 22.
    A.V. Filippov, M. Zurita, D.E. Rosner, J. Colloid. Interface Sci. 229, 261 (2000) CrossRefGoogle Scholar
  23. 23.
    L.E. Fried, W.M. Howard, Phys. Rev. B 61, 8734 (2000) CrossRefADSGoogle Scholar
  24. 24.
    H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003) CrossRefADSGoogle Scholar
  25. 25.
    L.K. Cohen, J. Chem. Phys. 99, 9652 (1993) CrossRefADSGoogle Scholar
  26. 26.
    M.B. Någård, P.U. Andersson, N. Marković, J.B.C. Pettersson, J. Chem. Phys. 109, 10339 (1998) CrossRefGoogle Scholar
  27. 27.
    W.A. Steele, J. Phys. Chem. 82, 817 (1978) CrossRefGoogle Scholar
  28. 28.
    G. Vidali, G. Ihm, H.-Y. Kim, M.W. Cole, Surf. Sci. Rep. 12, 133 (1991) CrossRefGoogle Scholar
  29. 29.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. (Academic Press, New York, 2005) Google Scholar
  30. 30.
    G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford University Press, Oxford, 1994) Google Scholar
  31. 31.
    I. Yasumoto, J. Phys. Chem 91, 4298 (1991) CrossRefGoogle Scholar
  32. 32.
    S.C. Saxena, R.K. Joshi, Thermal Accommodation and Adsorption Coefficients of Gases (McGraw-Hill, New York, 1981) Google Scholar
  33. 33.
    Y. Watanabe, H. Yamaguchi, M. Hashinokuchi, K. Sawabe, S. Maruyama, Y. Matsumoto, K. Shobatake, Chem. Phys. Lett. 413, 331 (2005) CrossRefADSGoogle Scholar
  34. 34.
    F.O. Goodman, H.Y. Wachman, Surf. Sci. 43, 306 (1974) CrossRefADSGoogle Scholar
  35. 35.
    C. Cercignani, Mathematical Methods in Kinetic Theory, 2nd edn. (Plenum, New York, 1990) MATHGoogle Scholar
  36. 36.
    D.W. Mackowski, Aerosol Sci. 37, 242 (2006) CrossRefGoogle Scholar
  37. 37.
    N. Yaminishi, Y. Matsumoto, Phys. Fluids 11, 3540 (1999) CrossRefADSGoogle Scholar
  38. 38.
    R.G. Lord, J. Phys. D 25, 327 (1992) CrossRefADSGoogle Scholar
  39. 39.
    E.J. Wegman, I.W. Wright, J. Am. Stat. Assoc. 78, 351 (1983) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2008

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.National Research Council CanadaOttawaCanada

Personalised recommendations