Applied Physics B

, 94:187 | Cite as

Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime

Article

Abstract

Numerical simulations are used to study how fiber supercontinuum generation seeded by picosecond pulses can be actively controlled through the use of input pulse modulation. By carrying out multiple simulations in the presence of noise, we show how tailored supercontinuum spectra with increased bandwidth and improved stability can be generated using an input envelope modulation of appropriate frequency and depth. The results are discussed in terms of the nonlinear propagation dynamics and pump depletion.

PACS

42.65.-k 42.81.Dp 

References

  1. 1.
    J.K. Ranka, R.S. Windeler, A.J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000) CrossRefADSGoogle Scholar
  2. 2.
    A.V. Husakou, J. Herrmann, Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 87(1–4), 203901 (2001) CrossRefADSGoogle Scholar
  3. 3.
    A.L. Gaeta, Nonlinear propagation and continuum generation in microstructured optical fibers. Opt. Lett. 27, 924–926 (2002) CrossRefADSGoogle Scholar
  4. 4.
    K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, R.S. Windeler, Fundamental noise limitations to supercontinuum generation in microstructure fiber. Phys. Rev. Lett. 90(1–4), 113904 (2003) CrossRefADSGoogle Scholar
  5. 5.
    J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006) CrossRefADSGoogle Scholar
  6. 6.
    M.N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J.P. Gordon, D.S. Chemla, Broad bandwidths from frequency-shifting solitons in fibers. Opt. Lett. 14, 370–372 (1989) CrossRefADSGoogle Scholar
  7. 7.
    M.N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J.P. Gordon, D.S. Chemla, Femtosecond distributed soliton spectrum in fibers. J. Opt. Soc. Am. B 6, 1149–1158 (1989) CrossRefADSGoogle Scholar
  8. 8.
    F. Vanholsbeeck, S. Martín-López, M. González-Herráez, S. Coen, The role of pump incoherence in continuous-wave supercontinuum generation. Opt. Express 13, 6615–6625 (2005) CrossRefADSGoogle Scholar
  9. 9.
    S.M. Kobtsev, S.V. Kukarin, N.V. Fateev, S.V. Smirnov, Coherent, polarization and temporal properties of self-frequency shifted solitons generated in polarization-maintaining microstructured fibre. Appl. Phys. B 81, 265–269 (2005) CrossRefADSGoogle Scholar
  10. 10.
    J.N. Kutz, C. Lyngå, B.J. Eggleton, Enhanced supercontinuum generation through dispersion-management. Opt. Express 13, 3989–3998 (2005) CrossRefADSGoogle Scholar
  11. 11.
    M.H. Frosz, O. Bang, A. Bjarklev, Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation. Opt. Express 14, 9391–9407 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-20-9391 CrossRefADSGoogle Scholar
  12. 12.
    A. Demircan, U. Bandelow, Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation. Appl. Phys. B 86, 31–39 (2007) CrossRefADSGoogle Scholar
  13. 13.
    B.A. Cumberland, J.C. Travers, S.V. Popov, J.R. Taylor, 29 W High power CW supercontinuum source. Opt. Express 16, 5954–5962 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-8-5954 CrossRefADSGoogle Scholar
  14. 14.
    D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Optical rogue waves. Nature 450, 1054–1058 (2007) CrossRefADSGoogle Scholar
  15. 15.
    J.M. Dudley, G. Genty, B.J. Eggleton, Harnessing and control of optical rogue waves in supercontinuum generation. Opt. Express 16, 3644–3651 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-6-3644 CrossRefADSGoogle Scholar
  16. 16.
    C.R. Menyuk, Non-Gaussian corrections to the Gordon–Haus distribution resulting from soliton interactions. Opt. Lett. 20, 285–287 (1995) CrossRefADSGoogle Scholar
  17. 17.
    F.K. Abdullaev, S.A. Darmanyan, F. Lederer, Evolution of randomly modulated solitons in optical fibers. Opt. Commun. 126, 89–94 (1996) CrossRefADSGoogle Scholar
  18. 18.
    T. Georges, Study of the non-Gaussian timing jitter statistics induced by soliton interaction and filtering. Opt. Commun. 123, 617–623 (1996) CrossRefADSGoogle Scholar
  19. 19.
    G.E. Falkovich, M.G. Stepanov, S.K. Turitsyn, Statistics of interacting optical solitons. Phys. Rev. E 64, 067602 (2001) CrossRefADSGoogle Scholar
  20. 20.
    S.A. Derevyanko, S.K. Turitsyn, D.A. Yakushev, Non-Gaussian statistics of an optical soliton in the presence of amplified spontaneous emission. Opt. Lett. 28, 2097–2099 (2003) CrossRefADSGoogle Scholar
  21. 21.
    Y.J. Chung, A. Peleg, Strongly non-Gaussian statistics of optical soliton parameters due to collisions in the presence of delayed Raman response. Nonlinearity 18, 1555–1574 (2005) MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    A. Peleg, Intermittent dynamics, strong correlations, and bit-error-rate in multichannel optical fiber communication systems. Phys. Lett. A 360, 533–538 (2007) CrossRefADSGoogle Scholar
  23. 23.
    A. Peleg, Raman cross talk between optical solitons as a random cascade model. arxiv:0706.4333v1 (2007)
  24. 24.
    N. Korneev, E.A. Kuzin, B. Ibarra-Escamilla, M. Bello-Jimènez, A. Flores-Rosas, Initial development of supercontinuum in fibers with anomalous dispersion pumped by nanosecond-long pulses. Opt. Express 16, 2636–2645 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-4-2636 CrossRefADSGoogle Scholar
  25. 25.
    S.M. Kobtsev, S.V. Kukarin, S.V. Smirnov, N.V. Fateev, Control of the spectral and coherent properties of a supercontinuum with pronounced soliton structures in the spectrum by using phase-modulated femtosecond pump pulses. Quantum Electron. 37, 1038–1042 (2007) CrossRefADSGoogle Scholar
  26. 26.
    D. Türke, J. Teipel, H. Giessen, Manipulation of supercontinuum generation by stimulated cascaded four-wave mixing in tapered fibres. Appl. Phys. B 92, 159 163 (2008) CrossRefGoogle Scholar
  27. 27.
    A. Efimov, A.J. Taylor, Supercontinuum generation and soliton timing jitter in SF6 soft glass photonic crystal fibers. Opt. Express 16, 5942–5953 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-8-5942 CrossRefADSGoogle Scholar
  28. 28.
    T.J. Ellingham, J.D. Ania-Castañón, S.K. Turitsyn, A.A. Pustovskikh, S.M. Kobtsev, M.P. Fedoruk, Dual-pump Raman amplification with increased flatness using modulation instability. Opt. Express 13, 1079–1084 (2005) CrossRefADSGoogle Scholar
  29. 29.
    S.V. Smirnov, J.D. Ania-Castañón, T.J. Ellingham, S.M. Kobtsev, S.V. Kukarin, S.K. Turitsyn, Optical spectral broadening and supercontinuum generation in telecom applications. Opt. Fiber. Technol. 12, 122–147 (2006) CrossRefADSGoogle Scholar
  30. 30.
    S.M. Kobtsev, S.V. Smirnov, Influence of noise amplification on generation of regular short pulse trains in optical fibre pumped by intensity-modulated CW radiation. Opt. Express 16, 7428–7434 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-10-7428 CrossRefADSGoogle Scholar
  31. 31.
    D.R. Solli, C. Ropers, B. Jalali, Demonstration of stimulated supercontinuum generation—an optical tipping point. arXiv:0801.4066v1 [physics.optics] (2008)
  32. 32.
    K.J. Blow, D. Wood, Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE J. Quantum Electron. 25, 2665–2673 (1989) CrossRefADSGoogle Scholar
  33. 33.
    R.H. Stolen, J.P. Gordon, W.J. Tomlinson, H.A. Haus, Raman response function of silica-core fibers. J. Opt. Soc. Am. B 6, 1159–1166 (1989) CrossRefADSGoogle Scholar
  34. 34.
    G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic Press, San Diego, 2006) Google Scholar
  35. 35.
    P.D. Drummond, J.F. Corney, Quantum noise in optical fibers. I. Stochastic equations. J. Opt. Soc. Am. B 18, 139–152 (2001) CrossRefADSGoogle Scholar
  36. 36.
    E.J. Greer, D.M. Patrick, P.G.J. Wigley, J.R. Taylor, Generation of 2 THz repetition rate pulse trains through induced modulational instability. Electron. Lett. 25, 1246–1248 (1989) CrossRefGoogle Scholar
  37. 37.
    P.V. Mamyshev, S.V. Chernikov, E.M. Dianov, Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines. IEEE J. Quantum Electron. 27, 2347–2355 (1991) CrossRefADSGoogle Scholar
  38. 38.
    J.M. Dudley, F. Gutty, S. Pitois, G. Millot, Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers. IEEE J. Quantum Electron. 37, 587–594 (2001) CrossRefADSGoogle Scholar
  39. 39.
    J.M. Dudley, S. Coen, Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. Opt. Lett. 27, 1180–1182 (2002) CrossRefADSGoogle Scholar
  40. 40.
    F. Vanholsbeeck, Ph. Emplit, S. Coen, Complete experimental characterization of the influence of parametric four-wave mixing on stimulated Raman gain. Opt. Lett. 28, 1960–1962 (2003) CrossRefADSGoogle Scholar
  41. 41.
    G. Cappellini, S. Trillo, Third-order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects. J. Opt. Soc. Am. B 8, 824–838 (1991) CrossRefADSGoogle Scholar
  42. 42.
    F. Luan, D.V. Skryabin, A.V. Yulin, J.C. Knight, Energy exchange between colliding solitons in photonic crystal fibers. Opt. Express 14, 9844–9853 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-21-9844 CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Optics Laboratory, Department of PhysicsTampere University of TechnologyTampereFinland
  2. 2.Institut FEMTO-ST, Départment d’Optique P. M. Duffieux, CNRS UMR 6174Université de Franche-ComtéBesançonFrance
  3. 3.CUDOS ARC Centre of Excellence, School of PhysicsUniversity of SydneySydneyAustralia

Personalised recommendations