Advertisement

Applied Physics B

, Volume 94, Issue 1, pp 33–38 | Cite as

Electroluminescence from ZnO nanowire-based p-GaN/n-ZnO heterojunction light-emitting diodes

  • R. Guo
  • J. Nishimura
  • M. Matsumoto
  • M. Higashihata
  • D. Nakamura
  • T. OkadaEmail author
Article

Abstract

Vertically aligned ZnO nanowires were successfully grown on the sapphire substrate by nanoparticle-assisted pulsed laser deposition (NAPLD), which were employed in fabricating the ZnO nanowire-based heterojunction structures. p-GaN/n-ZnO heterojunction light-emitting diodes (LEDs) with embedded ZnO nanowires were obtained by fabricating p-GaN:Mg film/ZnO nanowire/n-ZnO film structures. The current–voltage measurements showed a typical diode characteristic with a threshold voltage of about 2.5 V. Electroluminescence (EL) emission having the wavelength of about 380 nm was observed under forward bias in the heterojunction diodes and was intensified by increasing the applied voltage up to 30 V.

PACS

81.07.Vb 81.16.Mk 85.60.Jb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Il, G.C. Yi, Adv. Mater. (Weinh.) 16, 87 (2004) CrossRefGoogle Scholar
  2. 2.
    Y.I. Alivov, E.V. Kalinina, A.E. Cherenkov, D.C. Look, B.M. Ataev, A.K. Omaev, M.V. Chukichev, D.M. Bagnall, Appl. Phys. Lett. 83, 4719 (2003) CrossRefADSGoogle Scholar
  3. 3.
    Y.I. Alivov, J.E. Van Nostrand, D.C. Look, M.V. Chukichev, D.M. Ataev, Appl. Phys. Lett. 83, 2943 (2003) CrossRefADSGoogle Scholar
  4. 4.
    R.D. Vispute, V. Talyansky, S. Choopun, R.P. Sharma, T. Venkatesan, M. He, X. Tang, J.B. Halpern, M.G. Spencer, Y.X. Li, L.G. Salamaca-Riba, A.A. Iliadis, K.A. Jones, Appl. Phys. Lett. 73, 348 (1998) CrossRefADSGoogle Scholar
  5. 5.
    X. Wang, C.J. Summers, Z.L. Wang, Nano Lett. 4, 423 (2004) CrossRefGoogle Scholar
  6. 6.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001) CrossRefADSGoogle Scholar
  7. 7.
    X. Duan, Y. Huyang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66 (2001) CrossRefADSGoogle Scholar
  8. 8.
    G.D.J. Smit, S. Rogge, T.M. Klapwijk, Appl. Phys. Lett. 81, 3852 (2002) CrossRefADSGoogle Scholar
  9. 9.
    W.I. Park, G.C. Yi, Adv. Mater. 16, 87 (2004) CrossRefGoogle Scholar
  10. 10.
    D.J. Rogers, F. Hosseini Teherani, A. Yasan, K. Minder, P. Kung, M. Razeghi, Appl. Phys. Lett. 88, 141918 (2006) CrossRefADSGoogle Scholar
  11. 11.
    M.C. Jeong, B.Y. Oh, M.H. Ham, S.W. Lee, J.M. Myoung, Small 3, 568 (2007) CrossRefGoogle Scholar
  12. 12.
    M.C. Jeong, B.Y. Oh, M.H. Ham, J.M. Myoung, Appl. Phys. Lett. 88, 202105 (2006) CrossRefADSGoogle Scholar
  13. 13.
    R.Q. Guo, J. Nishimura, M. Ueda, M. Higashihata, D. Nakamura, T. Okada, Appl. Phys. A 89, 141 (2007) CrossRefADSGoogle Scholar
  14. 14.
    R.Q. Guo, J. Nishimura, M. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, Jpn. J. Appl. Phys. 47, 741 (2008) CrossRefADSGoogle Scholar
  15. 15.
    R.Q. Guo, J. Nishimura, M. Ueda, M. Higashihata, D. Nakamura, T. Okada, Appl. Surf. Sci. 254, 3100 (2008) CrossRefADSGoogle Scholar
  16. 16.
    M.C. Jeong, B.Y. Oh, O.H. Nam, T. Kim, J.M. Myoung, Nanotechnology 17, 526 (2006) CrossRefADSGoogle Scholar
  17. 17.
    A.G. Milnes, D.L. Feucht, Heterojunctions and Metal-Semiconductor Junctions (Academic Press, New York, 1972) Google Scholar
  18. 18.
    J.M. Myoung, K.H. Shim, C. Kim, O. Gluschenkov, K. Kim, S. Kim, D.A. Turnbull, S.G. Bishop, Appl. Phys. Lett. 69, 2722 (1996) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • R. Guo
    • 1
  • J. Nishimura
    • 2
  • M. Matsumoto
    • 2
  • M. Higashihata
    • 2
  • D. Nakamura
    • 2
  • T. Okada
    • 2
    Email author
  1. 1.Laboratory of Advanced MaterialsFudan UniversityShanghaiChina
  2. 2.Graduate School of Information Science and Electrical EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations