Applied Physics B

, Volume 93, Issue 4, pp 823–827

400 mW and 16.5% wavelength conversion efficiency at 488 nm using a diode laser and a PPLN crystal in single pass configuration

  • M. Uebernickel
  • C. Fiebig
  • G. Blume
  • K. Paschke
  • B. Eppich
  • R. Güther
  • G. Erbert
Article

Abstract

Continuous wave power of more than 400 mW at 488 nm has been generated by frequency doubling of 2.45 W at 976 nm obtained from a distributed Bragg reflector tapered diode laser. This results in a wavelength conversion efficiency of 16.5% and an electrical-to-optical efficiency of more than 4.5%. We used a 50 mm long periodically poled MgO:LiNbO3 bulk crystal in single-pass configuration for the second harmonic generation. This is to the author’s knowledge the highest output power and the highest wavelength conversion efficiency at 488 nm generated by a monolithic semiconductor laser device in single pass configuration with a bulk crystal. A deviation from the quadratic dependency of the frequency doubling is explained by the decrease of the beam quality of the fundamental wave.

PACS

42.65.Ky 42.55.Px 42.60.Pk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Macey, Flow Cytometry: Principles and Applications (Humana Press, Totowa, 2007) Google Scholar
  2. 2.
    F. Bachmann, P. Loosen, R. Poprawe, High Power Diode Lasers: Technology and Applications (Springer, Berlin, 2007) Google Scholar
  3. 3.
    O.H. Nam, K.H. Ha, J.S. Kwak, S.N. Lee, K.K. Choi, T.H. Chang, S.H. Chae, W.S. Lee, Y.J. Sung, H.S. Paek, J.H. Chae, T. Sakong, J.K. Son, H.Y. Ryu, Y.H. Kim, Y. Park, Phys. Stat. Sol. (a) 201, 2717 (2004) CrossRefADSGoogle Scholar
  4. 4.
    M. Ohta, Y. Ohizumi, Y. Hoshina, T. Tanaka, Y. Yabuki, K. Funato, S. Tomiya, S. Goto, M. Ikeda, Phys. Stat. Sol. (a) 204, 20682072 (2007) CrossRefGoogle Scholar
  5. 5.
    G. Blume, M. Uebernickel, C. Fiebig, K. Paschke, A. Ginolas, B. Eppich, R. Güther, G. Erbert, Proc. SPIE 6875, 68751C (2008) CrossRefGoogle Scholar
  6. 6.
    D. Birkin, E. Rafailov, G. Sokolovskii, W. Sibbett, G. Ross, P. Smith, D. Hanna, Appl. Phys. Lett. 78, 3172 (2001) CrossRefADSGoogle Scholar
  7. 7.
    A. Jechow, M. Schedel, S. Stry, J. Sacher, R. Menzel, Opt. Lett. 32, 3025 (2007) CrossRefADSGoogle Scholar
  8. 8.
    M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, T. Taira, Appl. Phys. Lett. 83, 3659 (2003) CrossRefADSGoogle Scholar
  9. 9.
    M. Maiwald, S. Schwertfeger, R. Güther, B. Sumpf, K. Paschke, C. Dzionk, G. Erbert, G. Tränkle, Opt. Lett. 31, 802 (2006) CrossRefADSGoogle Scholar
  10. 10.
    K. Paschke, J. Behrendt, M. Maiwald, J. Friecke, H. Wenzel, G. Erbert, Proc. SPIE 6184, 01-7 (2005) Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • M. Uebernickel
    • 1
  • C. Fiebig
    • 1
  • G. Blume
    • 1
  • K. Paschke
    • 1
  • B. Eppich
    • 1
  • R. Güther
    • 1
  • G. Erbert
    • 1
  1. 1.Ferdinand-Braun-Institut für HöchstfrequenztechnikBerlinGermany

Personalised recommendations