Applied Physics B

, 93:595

Beam wander of dark hollow, flat-topped and annular beams

Article

Abstract

Benefiting from the earlier derivations for the Gaussian beam, we formulate beam wander for dark hollow (DH) and flat-topped (FT) beams, also covering the annular Gaussian (AG) beam as a special case. Via graphical illustrations, beam wander variations of these beams are analyzed and compared among themselves and to the fundamental Gaussian beam against changes in propagation length, amplitude factor, source size, wavelength of operation, inner and outer scales of turbulence. These comparisons show that in relation to the fundamental Gaussian beam, DH and FT beams will exhibit less beam wander, particularly at small primary beam source sizes, lower amplitude factors of the secondary beam and higher beam orders. Furthermore, DH and FT beams will continue to preserve this advantageous position all throughout the considered range of wavelengths, inner and outer scales of turbulence. FT beams, in particular, are observed to have the smallest beam wander values among all, up to certain source sizes.

PACS

92.60.Hk 42.60.Jf 42.68.Bz 42.68.-w 

References

  1. 1.
    L.C. Andrews, R.L. Phillips, Laser Beam Propagation through Random Media, 2nd edn. (SPIE Optical Engineering Press, Bellingham, 2005) Google Scholar
  2. 2.
    L.C. Andrews, R.L. Phillips, R.J. Sasiela, R. Parenti, Proc. SPIE 5793, 28 (2005) CrossRefADSGoogle Scholar
  3. 3.
    L.C. Andrews, R.L. Phillips, Proc. SPIE 6878, 687802-1 (2008) Google Scholar
  4. 4.
    L.A. Chernov, Wave Propagation in a Random Medium (Dover, New York, 1967) Google Scholar
  5. 5.
    P. Beckmann, Radio Sci. D 69, 629 (1965) Google Scholar
  6. 6.
    G.A. Andreev, E.I. Gelfer, Radiophys. Quantum Electron. 14, 1145 (1971) CrossRefADSGoogle Scholar
  7. 7.
    R.J. Cook, J. Opt. Soc. Am. 65, 942 (1975) CrossRefADSGoogle Scholar
  8. 8.
    T. Chiba, Appl. Opt. 10, 2456 (1971) CrossRefADSGoogle Scholar
  9. 9.
    R.L. Fante, Proc. IEEE 63, 1669 (1975) CrossRefADSGoogle Scholar
  10. 10.
    V.I. Klyatskin, A.I. Kon, Radiophys. Quantum Electron. 15, 1056 (1972) CrossRefADSGoogle Scholar
  11. 11.
    A.I. Kon, V.L. Mironov, V.V. Nosov, Radiophys. Quantum Electron. 19, 722 (1976) CrossRefADSGoogle Scholar
  12. 12.
    V.L. Mironov, V.V. Nosov, J. Opt. Soc. Am. 67, 1073 (1977) CrossRefADSGoogle Scholar
  13. 13.
    L.H. Churnside, R.J. Lataitis, Appl. Opt. 29, 926 (1990) CrossRefADSGoogle Scholar
  14. 14.
    J.A. Dowling, P.M. Livingston, J. Opt. Soc. Am. 63, 846 (1973) CrossRefADSGoogle Scholar
  15. 15.
    J.R. Dunphy, J.R. Kerr, Appl. Opt. 16, 1345 (1977) CrossRefADSGoogle Scholar
  16. 16.
    D.H. Tofsted, Appl. Opt. 31, 5865 (1991) CrossRefADSGoogle Scholar
  17. 17.
    G.J. Baker, R.S. Benson, Proc. SPIE 5550, 225 (2004) CrossRefADSGoogle Scholar
  18. 18.
    F. Dios, J.A. Rubio, A. Rodriguez, A. Comeron, App. Opt. 43, 3866 (2004) CrossRefADSGoogle Scholar
  19. 19.
    L.C. Andrews, R.L. Phillips, R.J. Sasiela, R.R. Parenti, Opt. Eng. 45(7), 076001-1 (2006) CrossRefADSGoogle Scholar
  20. 20.
    J. Recolons, L.C. Andrews, R.L. Phillips, Opt. Eng. 46(8), 086002-1 (2007) CrossRefADSGoogle Scholar
  21. 21.
    G.P. Berman, A.A. Chumak, V.N. Gorskov, Am. Phys. Soc. E 76, 056606-1 (2007) Google Scholar
  22. 22.
    D.C. Cowan, L.C. Andrews, Opt. Eng. 47(2), 026001-1 (2008) CrossRefADSGoogle Scholar
  23. 23.
    Y. Baykal, H.T. Eyyuboğlu, Appl. Opt. 45, 3793 (2006) CrossRefADSGoogle Scholar
  24. 24.
    Y. Baykal, H.T. Eyyuboğlu, Appl. Opt. 46, 5044 (2007) CrossRefADSGoogle Scholar
  25. 25.
    Y. Chen, Y. Cai, H.T. Eyyuboğlu, Y. Baykal, Appl. Phys. B 90, 87 (2008) CrossRefADSGoogle Scholar
  26. 26.
    H.T. Eyyuboğlu, Opt. Laser Technol. 40, 156 (2008) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Electronic and Communication Engineering DepartmentÇankaya UniversityBalgat AnkaraTurkey

Personalised recommendations