Applied Physics B

, 93:409 | Cite as

High-resolution laser spectroscopy of ultracold ytterbium atoms using spin-forbidden electric quadrupole transition

  • S. Uetake
  • A. Yamaguchi
  • D. Hashimoto
  • Y. Takahashi
Article

Abstract

We have successfully observed high-resolution spectra of spin-forbidden electric quadrupole transition (1S03D2) in ytterbium (174Yb) atoms. The differential light shifts between the 1S0 and the 3D2 states in a far-off resonant trap at 532 nm are also measured. For the spectroscopy, we developed simple, narrow-linewidth, and long-term frequency stabilized violet diode laser systems. Long-term drifts of the excitation laser (404 nm) is suppressed by locking the laser to a length stabilized optical cavity. The optical path length of the cavity is stabilized to another diode laser whose frequency is locked to a strong 1S01P1 transition (399 nm) of Yb. Both lasers are standard extended-cavity diode lasers (ECDLs) in the Littrow configuration. Since the linewidth of a violet ECDL (∼10 MHz) is broader than a typical value of a red or near infra-red ECDL (<1 MHz), we employ optical feedback from a narrow-band Fabry–Perot cavity to reduce the linewidth. The linewidth is expected to be <20 kHz for 1 ms averaging time, and the long-term frequency stability is estimated to be ∼200 kHz/h.

PACS

32.30.Jc 42.62.Fi 42.55.Px 

References

  1. 1.
    A. Yamaguchi, S. Uetake, D. Hashimoto, J.M. Doyle, Y. Takahashi, arXiv:0802.0461 (2008)
  2. 2.
    A. Derevianko, S.G. Porsev, S. Kotochigova, E. Tiesinga, P.S. Julienne, Phys. Rev. Lett. 90, 063002 (2003) CrossRefADSGoogle Scholar
  3. 3.
    R. Santra, C.H. Greene, Phys. Rev. A 67, 062713 (2003) CrossRefADSGoogle Scholar
  4. 4.
    V. Kokoouline, R. Santra, C.H. Greene, Phys. Rev. Lett. 90, 253201 (2003) CrossRefADSGoogle Scholar
  5. 5.
    P. Spoden, M. Zinner, N. Herschbach, W.J. van Drunen, W. Ertmer, G. Birkl, Phys. Rev. Lett. 94, 223201 (2005) CrossRefADSGoogle Scholar
  6. 6.
    A. Derevianko, C.C. Cannon, Phys. Rev. A 70, 062319 (2004) CrossRefADSGoogle Scholar
  7. 7.
    K. Góral, L. Santos, M. Lewenstein, Phys. Rev. Lett. 88, 170406 (2002) CrossRefGoogle Scholar
  8. 8.
    S.B. Nagel, C.E. Simien, S. Laha, P. Gupta, V.S. Ashoka, T.C. Killian, Phys. Rev. A 67, 011401 (2003) CrossRefADSGoogle Scholar
  9. 9.
    M. Yasuda, H. Katori, Phys. Rev. Lett. 92, 153004 (2004) CrossRefADSGoogle Scholar
  10. 10.
    D. Hansen, A. Hemmerich, Phys. Rev. Lett. 96, 073003 (2006) CrossRefADSGoogle Scholar
  11. 11.
    D.P. Hansen, J.R. Mohr, A. Hemmerich, Phys. Rev. A 67, 021401 (2003) CrossRefADSGoogle Scholar
  12. 12.
    K. Hayasaka, Opt. Commun. 206, 401 (2002) CrossRefADSGoogle Scholar
  13. 13.
    S. Uetake, K. Hayasaka, M. Watanabe, Jpn. J. Appl. Phys. 42, L332 (2003) CrossRefADSGoogle Scholar
  14. 14.
    S. Uetake, K. Hayasaka (unpublished) Google Scholar
  15. 15.
    B. Burghardt, W. Jitschin, G. Meisel, Appl. Phys. 20, 141 (1979) CrossRefADSGoogle Scholar
  16. 16.
    J. Helmcke, S.A. Lee, J.L. Hall, Appl. Opt. 21, 1686 (1982) CrossRefADSGoogle Scholar
  17. 17.
    B.G. Lindsay, K.A. Smith, F.B. Dunning, Rev. Sci. Instrum. 62, 1656 (1991) CrossRefADSGoogle Scholar
  18. 18.
    W.Z. Zhao, J.E. Simsarian, L.A. Orozco, G.D. Sprouse, Rev. Sci. Instrum. 69, 3737 (1998) CrossRefADSGoogle Scholar
  19. 19.
    A. Rossi, V. Biancalana, B. Mai, L. Tomassetti, Rev. Sci. Instrum. 73, 2544 (2002) CrossRefADSGoogle Scholar
  20. 20.
    K. Matsubara, S. Uetake, H. Ito, Y. Li, K. Hayasaka, M. Hosokawa, Jpn. J. Appl. Phys. 44, 229 (2005) CrossRefADSGoogle Scholar
  21. 21.
    P. Bohlouli-Zanjani, K. Afrousheh, J.D.D. Martin, Rev. Sci. Instrum. 77, 093105 (2006) CrossRefADSGoogle Scholar
  22. 22.
    H. Leinen, D. Gläßner, H. Metcalf, R. Wynands, D. Haubrich, D. Meschede, Appl. Phys. B 70, 567 (2000) CrossRefADSGoogle Scholar
  23. 23.
    R.S. Conroy, J.J. Hewett, G.P.T. Lancaster, W. Sibbett, J.W. Allen, K. Dholakia, Opt. Commun. 175, 185 (2000) CrossRefADSGoogle Scholar
  24. 24.
    K. Hayasaka, S. Urabe, M. Watanabe, Jpn. J. Appl. Phys. 39, L687 (2000) CrossRefADSGoogle Scholar
  25. 25.
    A. Shiner, A. Madej, P. Dubé, J. Bernard, Appl. Phys. B 89, 595 (2007) CrossRefADSGoogle Scholar
  26. 26.
    L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T.W. Hänsch, Opt. Commun. 117, 541 (1995) CrossRefADSGoogle Scholar
  27. 27.
    C.J. Hawthorn, K.P. Weber, R.E. Scholten, Rev. Sci. Instrum. 72, 4477 (2001) CrossRefADSGoogle Scholar
  28. 28.
    P. Laurent, A. Clairon, C. Bréant, IEEE J. Quantum Electron. 25, 1131 (1989) CrossRefADSGoogle Scholar
  29. 29.
    S. Ohshima, H. Schnatz, J. Appl. Phys. 71, 3114 (1992) CrossRefADSGoogle Scholar
  30. 30.
    B. Edlén, Metrologia 2, 71 (1966) CrossRefADSGoogle Scholar
  31. 31.
    K.P. Birch, M.J. Downs, Metrologia 30, 155 (1993) CrossRefADSGoogle Scholar
  32. 32.
    D. Sonntag, Meteorol. Z. 3, 51 (1994) Google Scholar
  33. 33.
    WMO Guide to Meteorological Instruments and Methods of Observation, 7th edn. Google Scholar
  34. 34.
    T. Kuwamoto, K. Honda, Y. Takahashi, T. Yabuzaki, Phys. Rev. A 60, R745 (1999) CrossRefADSGoogle Scholar
  35. 35.
    S. Uetake, A. Yamaguchi, S. Kato, Y. Takahashi, Appl. Phys. B 92, 33 (2008) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • S. Uetake
    • 1
  • A. Yamaguchi
    • 2
  • D. Hashimoto
    • 2
  • Y. Takahashi
    • 1
    • 2
  1. 1.CRESTJapan Science and Technology AgencySaitamaJapan
  2. 2.Department of Physics, Graduate School of ScienceKyoto UniversityKyotoJapan
  3. 3.National Institute of Information and Communications TechnologyTokyoJapan
  4. 4.NTT Basic Research LaboratoriesKanagawaJapan

Personalised recommendations