Applied Physics B

, 93:531 | Cite as

Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers

  • D. Lorenc
  • M. Aranyosiova
  • R. Buczynski
  • R. Stepien
  • I. Bugar
  • A. Vincze
  • D. Velic
Article

Abstract

The second order nonlinear refractive index n2 of various multicomponent glasses was measured at the wavelength of 1240 nm close to the 1.3-μm fiber transmission window. With the refractive index covering the range from 1.45 to 2.3, a comparatively broad range of n2 with values from 1.1×10−20 m2/W for boro-silicate based glass NC21 to 4.3×10−19 m2/W for lead–bismuth-gallate based glass PBG08 was measured using the Z-scan method. Considering the broad infrared transmission range of multicomponent glasses, these materials pose a great potential for future applications as photonic crystal fiber sources of infrared supercontinuum.

PACS

42.65.Jx 42.70.Ce 

References

  1. 1.
    J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin, Opt. Lett. 21, 1547 (1996) CrossRefADSGoogle Scholar
  2. 2.
    J.K. Ranka, R.S. Windeler, A.J. Stentz, Opt. Lett. 25, 25 (2000) CrossRefADSGoogle Scholar
  3. 3.
    J.M. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006) CrossRefADSGoogle Scholar
  4. 4.
    G.P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2001) Google Scholar
  5. 5.
    T. Monro, Y. West, D. Hewak, B.N. Richardson, Electron. Lett. 36, 1998 (2000) CrossRefGoogle Scholar
  6. 6.
    V.V.R. Kumar, A. George, W. Reeves, J. Knight, P. Russell, F. Omenetto, A. Taylor, Opt. Express 10, 1520 (2002) ADSGoogle Scholar
  7. 7.
    J.H.V. Price, T.M. Monro, H. Ebendorff-Heidepriem, F. Poletti, V. Finazzi, J.Y.Y. Leong, P. Petropoulos, J.C. Flanagan, G. Brambilla, X. Feng, D.J. Richardson, Proc. SPIE 6102, 61020A 2006) CrossRefGoogle Scholar
  8. 8.
    V.I. Kalashnikov, E. Sorokin, I.T. Sorokina, Appl. Phys. B 87, 37 (2007) CrossRefADSGoogle Scholar
  9. 9.
    P. Domachuk, N.A. Wolchover, M. Cronin-Golomb, A. Wnag, A.K. George, C.M.B. Cordeiro, J.C. Knight, F.G. Omenetto, Opt. Express 16, 7161 (2008) CrossRefADSGoogle Scholar
  10. 10.
    M.J. Weber, D. Milam, W.L. Smith, Opt. Eng. 17, 463 (1978) Google Scholar
  11. 11.
    M.J. Moran, C.Y. She, R.L. Carman, IEEE J. Quantum Electron. 11, 259 (1975) CrossRefADSGoogle Scholar
  12. 12.
    R. Adair, L.L. Chase, S.A. Payne, J. Opt. Soc. Am. B 4, 875 (1987) CrossRefADSGoogle Scholar
  13. 13.
    A. Owyoung, IEEE J. Quantum Electron. 9, 1064 (1973) CrossRefADSGoogle Scholar
  14. 14.
    W.E. Williams, M.J. Soileau, E.W. Van Stryland, Opt. Commun. 50, 256 (1984) CrossRefADSGoogle Scholar
  15. 15.
    M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, Opt. Lett. 14, 955 (1989) CrossRefADSGoogle Scholar
  16. 16.
    A.A. Said, M. Sheik-Bahae, D.J. Hagan, T.H. Wei, J. Wang, J. Young, E.W. Van Stryland, J. Opt. Soc. Am. B 9, 405 (1992) CrossRefADSGoogle Scholar
  17. 17.
    K. Lee, W. Cho, J. Park, J. Kim, S. Park, U. Kim, Opt. Lett. 19, 1116 (1994) CrossRefADSGoogle Scholar
  18. 18.
    J. Wang, M. Sheik-Bahae, A.A. Said, D.J. Hagan, E.W. Van Stryland, J. Opt. Soc. Am. B 11, 1009 (1994) CrossRefADSGoogle Scholar
  19. 19.
    K.Y. Tseng, K.S. Wong, G.K.L. Wong, Opt. Lett. 21, 180 (1996) CrossRefADSGoogle Scholar
  20. 20.
    R. DeSalvo, A.A. Said, D.J. Hagan, E.W. Van Stryland, M. Sheik-Bahae, IEEE J. Quantum Electron. 32, 1324 (1996) CrossRefADSGoogle Scholar
  21. 21.
    J.M. Harris, N.J. Dovichi, Anal. Chem. 52, 695 (1980) CrossRefGoogle Scholar
  22. 22.
    M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990) CrossRefADSGoogle Scholar
  23. 23.
    H.P. Li, C.H. Kam, Y.L. Lam, F. Zhou, W. Ji, Appl. Phys. B 70, 385 (2000) CrossRefADSGoogle Scholar
  24. 24.
    M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991) CrossRefADSGoogle Scholar
  25. 25.
    M. Sheik-Bahae, D.J. Hagan, E.W. Van Stryland, Phys. Rev. Lett. 65, 96 (1990) CrossRefADSGoogle Scholar
  26. 26.
    N.L. Boling, A.J. Glass, A. Owyoung, IEEE J. Quantum Electron. 14, 601 (1978) CrossRefADSGoogle Scholar
  27. 27.
    M.J. Weber, Handbook of Optical Materials (CRC, Boca Raton, 2003) Google Scholar
  28. 28.
    D. Milam, M.J. Weber, J. Appl. Phys. 47, 2497 (1976) CrossRefADSGoogle Scholar
  29. 29.
    A.V. Mitrofanov, Y.M. Linik, R. Buczynski, D. Pysz, D. Lorenc, I. Bugar, A.A. Ivanov, M.V. Alfimov, A.B. Fedotov, A.M. Zheltikov, Opt. Express 14, 10645 2006) CrossRefADSGoogle Scholar
  30. 30.
    D. Lorenc, I. Bugar, M. Aranyosiova, R. Buczynski, D. Velic, D. Chorvat, Laser Phys. 18, 270 (2008) ADSGoogle Scholar
  31. 31.
    ZEMAX Glass Catalog. ZEMAX Development Corporation, Bellevue, WA, 1990–2000 Google Scholar
  32. 32.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966) CrossRefGoogle Scholar
  33. 33.
    S.E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996) Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • D. Lorenc
    • 1
  • M. Aranyosiova
    • 1
    • 2
  • R. Buczynski
    • 3
  • R. Stepien
    • 4
  • I. Bugar
    • 1
  • A. Vincze
    • 1
  • D. Velic
    • 1
    • 2
  1. 1.International Laser CentreBratislavaSlovakia
  2. 2.Department of Physical and Theoretical Chemistry, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  3. 3.Information Optics Group, Faculty of PhysicsWarsaw UniversityWarsawPoland
  4. 4.Institute of Electronic Materials TechnologyWarsawPoland

Personalised recommendations