Advertisement

Applied Physics B

, Volume 93, Issue 2–3, pp 627–638 | Cite as

Two-wavelength mid-IR diagnostic for temperature and n-dodecane concentration in an aerosol shock tube

  • A. E. Klingbeil
  • J. B. Jeffries
  • D. F. Davidson
  • R. K. Hanson
Article

Abstract

A two-wavelength, mid-IR optical absorption diagnostic is developed for simultaneous temperature and n-dodecane vapor concentration measurements in an aerosol-laden shock tube. FTIR absorption spectra for the temperature range 323 to 773 K are used to select the two wavelengths (3409.0 and 3432.4 nm). Shock-heated mixtures of n-dodecane vapor in argon are then used to extend absorption cross section data at these wavelengths to 1322 K. The sensor is used to validate a model of the post-evaporation temperature and pressure of shock-heated fuel aerosol, which can ultimately be used for the study of the chemistry of low-vapor-pressure compounds and fuel blends. The signal-to-noise ratio of the temperature and concentration are ∼20 and ∼30, respectively, illustrating the sensitivity of this diagnostic. The good agreement between model and measurement provide confidence in the use of this aerosol shock tube to provide well-known thermodynamic conditions. At high temperatures, pseudo-first-order decomposition rates are extracted from time-resolved concentration measurements, and data from vapor and aerosol shocks are found to be in good agreement. Notably, the n-dodecane concentration measurements exhibit slower decomposition than predicted by models using two published reaction mechanisms, illustrating the need for further kinetic studies of this hydrocarbon. These results demonstrate the potential of multi-wavelength mid-IR laser sensors for hydrocarbon measurements in environments with time-varying temperature and concentration.

PACS

42.62.Fi 82.30.Lp 07.07.Df 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.G. Allen, Meas. Sci. Technol. 9, 545 (1998) CrossRefADSGoogle Scholar
  2. 2.
    A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus Press, Cambridge, 1988) Google Scholar
  3. 3.
    J.B. Jeffries, K. Kohse-Hoinghaus, Applied Combustion Diagnostics (Taylor & Francis, New York, 2002) Google Scholar
  4. 4.
    C.M. Brophy, R.K. Hanson, J. Propuls. Power 22, 1155 (2006) CrossRefGoogle Scholar
  5. 5.
    J.F. Griffiths, B.J. Whitaker, Combust. Flame 131, 386 (2002) CrossRefGoogle Scholar
  6. 6.
    A. Kakuho, K. Yamaguchi, Y. Hashizume, T. Urushihara, T. Itoh, E. Tomita, in 2004 SAE Fuels & Lubricants Meeting & Exhibition (Toulouse, France) 2004-01-1946 (2004) Google Scholar
  7. 7.
    G.B. Rieker, H. Li, X. Liu, J.T.C. Liu, J.B. Jeffries, R.K. Hanson, M.G. Allen, S.D. Wehe, P.A. Mulhall, H.S. Kindle, A. Kakuho, K.R. Sholes, T. Matsuura, S. Takatani, Proc. Combust. Inst. 31, 3041 (2007) CrossRefGoogle Scholar
  8. 8.
    L. Ma, S.T. Sanders, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 29, 161 (2003) CrossRefGoogle Scholar
  9. 9.
    D.W. Mattison, J.B. Jeffries, R.K. Hanson, R.R. Steeper, S. De Zilwa, J.E. Dec, M. Sjoberg, W. Hwang, Proc. Combust. Inst. 31, 791 (2007) CrossRefGoogle Scholar
  10. 10.
    A. Farooq, J.B. Jeffries, R.K. Hanson, CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm. Appl. Phys. B 90, 619–628 (2008) CrossRefADSGoogle Scholar
  11. 11.
    E. Tomita, N. Kawahara, A. Nishiyama, M. Shigenaga, Meas. Sci. Technol. 14, 1357 (2003) CrossRefADSGoogle Scholar
  12. 12.
    A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, AIAA J. 45, 4 (2007) CrossRefGoogle Scholar
  13. 13.
    M.J. Hall, M. Koenig, Proc. Combust. Inst. 26, 2613 (1996) Google Scholar
  14. 14.
    A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 31, 807 (2007) CrossRefGoogle Scholar
  15. 15.
    A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, Two-wavelength mid-IR absorption diagnostic for simultaneous measurement of temperature and hydrocarbon fuel concentration. Proc. Combust. Inst. 32 (2009, in press) Google Scholar
  16. 16.
    J. Kashdan, T.C. Hanson, E. Piper, D.F. Davidson, R.K. Hanson, in 42nd Aerospace Meeting (Reno, NV), AIAA-2004-0468 (2004) Google Scholar
  17. 17.
    T.C. Hanson, D.F. Davidson, R.K. Hanson, Phys. Fluids 19(5), 056104 (2007) CrossRefADSGoogle Scholar
  18. 18.
    D.F. Davidson, D.R. Haylett, R.K. Hanson, Development of an aerosol shock tube for kinetic studies of low-vapo-pressure fuels. Combust. Flame (2008, in press) Google Scholar
  19. 19.
    A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, J. Quant. Spec. Rad. Trans. 107(3), 407 (2007) CrossRefADSGoogle Scholar
  20. 20.
    X. Zhou, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 81, 711 (2005) CrossRefADSGoogle Scholar
  21. 21.
    E.A. Barbour, R.K. Hanson, P. Hutcheson, C.M. Brophy, J.O. Sinibaldi, in 45th AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV), AIAA-2007-232 (2007) Google Scholar
  22. 22.
    J.J. Scherer, Laser Focus World 43, 103–106 (2007) Google Scholar
  23. 23.
    W. Chen, J. Cousin, E. Poullet, J. Burie, D. Boucher, X. Gao, M.W. Sigrist, F.K. Tittel, Comptes Rendus 8, 1129–1150 (2007) CrossRefGoogle Scholar
  24. 24.
    D. Richter, P. Weibring, Appl. Phys. B 82, 479 (2006) CrossRefADSGoogle Scholar
  25. 25.
    G. Emanuel, Shock waves in gases, in Handbook of Shock Waves, ed. by G. Ben-Dor, O. Igra, T. Elperin. Theoretical, vol. 1 (Academic Press, San Diego, 2001) CrossRefGoogle Scholar
  26. 26.
    S.W. Sharpe, T.J. Johnson, R.L. Sams, P.M. Chu, G.C. Rhoderick, P.A. Johnson, Appl. Spec. 58, 1452 (2004) CrossRefADSGoogle Scholar
  27. 27.
    H.R. Zhang, E.G. Eddings, A.F. Sarofim, Proc. Combust. Inst. 31, 401 (2007) CrossRefGoogle Scholar
  28. 28.
    H.R. Zhang, Ph.D. Dissertation, Department of Chemical Engineering, University of Utah, Salt Lake City, UT, May, 2005 Google Scholar
  29. 29.
    E. Ranzi, A. Frassoldati, S. Granata, T. Faravelli, Ind. Eng. Chem. Res. 44, 5170 (2005) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. E. Klingbeil
    • 1
  • J. B. Jeffries
    • 1
  • D. F. Davidson
    • 1
  • R. K. Hanson
    • 1
  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations