Applied Physics B

, 93:677 | Cite as

Fluorescence quantum yield of carbon dioxide for quantitative UV laser-induced fluorescence in high-pressure flames

  • T. Lee
  • W. G. Bessler
  • J. Yoo
  • C. Schulz
  • J. B. Jeffries
  • R. K. Hanson
Article

Abstract

The fluorescence quantum yield for ultraviolet laser-induced fluorescence of CO2 is determined for selected excitation wavelengths in the range 215–250 nm. Wavelength-resolved laser-induced fluorescence (LIF) spectra of CO2, NO, and O2 are measured in the burned gases of a laminar CH4/air flame (φ=0.9 and 1.1) at 20 bar with additional NO seeded into the flow. The fluorescence spectra are fit to determine the relative contribution of the three species to infer an estimate of fluorescence quantum yield for CO2 that ranges from 2–8×10−6 depending on temperature and excitation wavelength with an estimated uncertainty of ±0.5×10−6. The CO2 fluorescence signal increases linearly with gas pressure for flames with constant CO2 mole fraction for the 10 to 60 bar range, indicating that collisional quenching is not an important contributor to the CO2 fluorescence quantum yield. Spectral simulation calculations are used to choose two wavelengths for excitation of CO2, 239.34 and 242.14 nm, which minimize interference from LIF of NO and O2. Quantitative LIF images of CO2 are demonstrated using these two excitation wavelengths and the measured fluorescence quantum yield.

PACS

42.62.Fi 42.30.Va 47.70.Pq 07.35+k 39.30+w 

References

  1. 1.
    W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson, Chem. Phys. Lett. 375, 344–349 (2003) CrossRefADSGoogle Scholar
  2. 2.
    T. Lee, W.G. Bessler, C. Schulz, M. Patel, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 79, 427–430 (2004) Google Scholar
  3. 3.
    A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, Amsterdam, 1996) Google Scholar
  4. 4.
    J. Wolfrum, Proc. Combust. Inst. 27, 1–41 (1998) Google Scholar
  5. 5.
    K. Kohse-Höinghaus, J.B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, London, 2002) Google Scholar
  6. 6.
    B.J. Kirby, R.K. Hanson, Appl. Opt. 41, 1190–1201 (2002) CrossRefADSGoogle Scholar
  7. 7.
    B.J. Kirby, R.K. Hanson, Appl. Opt. 40, 6130–6144 (2001) CrossRefADSGoogle Scholar
  8. 8.
    W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson, Appl. Opt. 42, 4922–4936 (2003) CrossRefADSGoogle Scholar
  9. 9.
    W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson, Appl. Opt. 42, 2031–2042 (2003) CrossRefADSGoogle Scholar
  10. 10.
    W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson, Appl. Opt. 41, 3547–3557 (2002) CrossRefADSGoogle Scholar
  11. 11.
    F. Hildenbrand, C. Schulz, Appl. Phys. B 73, 165–172 (2001) ADSGoogle Scholar
  12. 12.
    C. Schulz, J.D. Koch, D.F. Davidson, J.B. Jeffries, R.K. Hanson, Chem. Phys. Lett. 355, 82–88 (2002) CrossRefADSGoogle Scholar
  13. 13.
    C. Schulz, J.B. Jeffries, D.F. Davidson, J.D. Koch, J. Wolfrum, R.K. Hanson, Proc. Combust. Inst. 29, 2725–2742 (2002) CrossRefGoogle Scholar
  14. 14.
    M.A. Oehlschlaeger, D.F. Davidson, J.B. Jeffries, R.K. Hanson, Chem. Phys. Lett. 399, 490–495 (2004) CrossRefADSGoogle Scholar
  15. 15.
    J.W. Rabalais, J.M. McDonald, V. Scherr, S.P. McGlynn, Chem. Rev. 71, 73–108 (1971) CrossRefGoogle Scholar
  16. 16.
    A. Spielfiedel, N. Feautrier, C. Cossart-Magos, G. Chambaud, P. Rosmus, H.-J. Werner, P. Botschwina, J. Chem. Phys. 97, 8382–8388 (1992) CrossRefADSGoogle Scholar
  17. 17.
    D. Harding, R.E. Weston Jr., G.W. Flynn, J. Chem. Phys. 88, 3590–3598 (1988) CrossRefADSGoogle Scholar
  18. 18.
    Y. Matsumi, N. Shafer, K. Tonokura, M. Kawasaki, Y. Huang, R.J. Gordon, J. Chem. Phys. 95, 7311–7316 (1991) CrossRefADSGoogle Scholar
  19. 19.
    M. Koshi, M. Yoshimura, H. Matsui, Chem. Phys. Lett. 176, 519–525 (1991) CrossRefADSGoogle Scholar
  20. 20.
    A.P. Nefedov, V.A. Sinel’shchikov, A.D. Usachev, A.V. Zobnin, Appl. Opt. 37, 7729–7736 (1998) CrossRefADSGoogle Scholar
  21. 21.
    V. Kondratjew, Z. Phys. 63, 322–333 (1930) CrossRefADSGoogle Scholar
  22. 22.
    R.N. Dixon, Proc. R. Soc. Lond. Ser. A275, 431–446 (1963) CrossRefADSGoogle Scholar
  23. 23.
    R.N. Dixon, Discuss. Faraday Soc. 35, 105–112 (1963) CrossRefGoogle Scholar
  24. 24.
    M. Slack, A. Grillo, Combust. Flame 59, 189–196 (1985) CrossRefGoogle Scholar
  25. 25.
    C.J. Malerich, J.H. Scanlon, Chem. Phys. Lett. 110, 303–313 (1986) Google Scholar
  26. 26.
    M.C. Lin, S.H. Bouer, J. Chem. Phys. 50, 3377–3391 (1969) CrossRefADSGoogle Scholar
  27. 27.
    J.H. Frank, X. Chen, B.D. Patterson, T.B. Settersten, Appl. Opt. 43, 2588–2597 (2004) CrossRefADSGoogle Scholar
  28. 28.
    T.B. Settersten, A. Dreizler, B.D. Patterson, P.E. Schrader, R.L. Farrow, Appl. Phys. B: Lasers Opt. 76, 479–482 (2003) CrossRefADSGoogle Scholar
  29. 29.
    T. Lee, W.G. Bessler, H. Kronemayer, C. Schulz, J.B. Jeffries, Appl. Opt. 44, 6718–6728 (2005) CrossRefADSGoogle Scholar
  30. 30.
    W.G. Bessler, C. Schulz, Appl. Phys. B 78, 519–533 (2004) CrossRefADSGoogle Scholar
  31. 31.
    G. Herzberg, Spectra of Diatomic Molecules (Krieger, Malabar, 1950) Google Scholar
  32. 32.
    W.G. Bessler, C. Schulz, V. Sick, J.W. Daily, A versatile modeling tool for nitric oxide LIF spectra, in 3rd Joint Meeting US Sec. Combust. Inst., Chicago (2003). www.lifsim.com
  33. 33.
    W. Reynolds, Stanjan: Chemical Equilibrium Solver (Stanford University, Stanford, 1987) Google Scholar
  34. 34.
    L.G. Piper, L.M. Cowles, J. Chem. Phys. 85, 2419–2422 (1986) CrossRefADSGoogle Scholar
  35. 35.
    P.H. Paul, J. Quant. Spectrosc. Radiat. Transf. 57, 581–589 (1997) CrossRefADSGoogle Scholar
  36. 36.
    P.H. Paul, J.A. Gray, J.L. Durant Jr., J.W. Thoman, Chem. Phys. Lett. 259, 508–541 (1996) CrossRefADSGoogle Scholar
  37. 37.
    P.H. Paul, J.A. Gray, J.L. Durant Jr., J.W. Thoman, AIAA J. 32, 1670–1675 (1994) CrossRefADSGoogle Scholar
  38. 38.
    J.R. Reisel, C.D. Carter, N.M. Laurendeau, J. Quant. Spectrosc. Radiat. Transf. 47, 43–54 (1982) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • T. Lee
    • 1
  • W. G. Bessler
    • 2
  • J. Yoo
    • 1
  • C. Schulz
    • 3
  • J. B. Jeffries
    • 1
  • R. K. Hanson
    • 1
  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Institute of Technical ThermodynamicsGerman Aerospace CenterStuttgartGermany
  3. 3.IVGUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations