Applied Physics B

, Volume 93, Issue 1, pp 209–216 | Cite as

Plasmon hybridization in nanorod dimers

Article

Abstract

Using the plasmon hybridization method we investigate the plasmon modes of nanorod dimers in axial and parallel orientations. We show that the plasmon modes of the system can be viewed as bonding and anti-bonding modes resulting from the hybridization of the plasmon modes of the individual nanorods. The dimer plasmon modes are found to depend sensitively on separation between the nanorods and on their relative spatial orientation. The calculated optical properties agree quantitatively with results from the numerical finite-difference time-domain method. The electric field enhancements are found to depend strongly on aspect ratio defined as the ratio of the major and minor radii, and on the relative orientation of the nanorods. For a nanorod dimer of fixed overall length, the maximum field enhancements are lower than those induced in a solid sphere dimer.

PACS

78.67.-n 78.67.Bf 36.40.Vz 73.22.Lp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Wang, C.S. Levin, N.J. Halas, J. Am. Chem. Soc. 127, 14992 (2005) CrossRefGoogle Scholar
  2. 2.
    C. Langhammer, I. Zoric, B. Kasemo, B.M. Clemens, Nano Lett. 7, 3122 (2007) CrossRefGoogle Scholar
  3. 3.
    R. Kumar, H. Zhou, S.B. Cronin, Appl. Phys. Lett. 91, 223105 (2007) CrossRefADSGoogle Scholar
  4. 4.
    F. Tam, G.P. Goodrich, B.R. Johnson, N.J. Halas, Nano Lett. 7, 496 (2007) CrossRefGoogle Scholar
  5. 5.
    J. Zhang, Y. Fu, M.H. Chowdury, J.R. Lakowicz, J. Phys. Chem. C 111, 11784 (2007) CrossRefGoogle Scholar
  6. 6.
    D. Neuhauser, K. Lopata, J. Chem. Phys. 127, 154715 (2007) CrossRefADSGoogle Scholar
  7. 7.
    S.A. Maier, H.A. Atwater, J. Appl. Phys. 98, 011101 (2005) CrossRefADSGoogle Scholar
  8. 8.
    K.-Y. Jung, F.L. Texeira, R.M. Reano, J. Light. Technol. 25, 2757 (2007) CrossRefADSGoogle Scholar
  9. 9.
    A. Hosseini, H. Nejati, Y. Massoud, Opt. Express 15, 15280 (2007) CrossRefADSGoogle Scholar
  10. 10.
    V.M. Shalaev, Nat. Photonics 1, 41 (2007) CrossRefADSGoogle Scholar
  11. 11.
    N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, Nature Mater. 7, 31 (2008) CrossRefADSGoogle Scholar
  12. 12.
    C. Loo, L. Hirsch, M.H. Lee, E. Chang, J. West, N.J. Halas, R. Drezek, Opt. Lett. 30, 1012 (2005) CrossRefADSGoogle Scholar
  13. 13.
    X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Nanomedicine 2, 681 (2007) CrossRefGoogle Scholar
  14. 14.
    M. Moskovits, D.H. Jeong, Chem. Phys. Lett. 397, 91 (2004) CrossRefADSGoogle Scholar
  15. 15.
    F. Le, D.W. Brandl, Y.A. Urzhumov, H. Wang, J. Kundu, N.J. Halas, J. Aizpurua, P. Nordlander, ACS Nano 2, 707 (2008) CrossRefGoogle Scholar
  16. 16.
    K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003) CrossRefGoogle Scholar
  17. 17.
    N.J. Halas, MRS Bull. 30, 362 (2005) Google Scholar
  18. 18.
    F. Hubenthal, T. Ziegler, C. Hendrich, M. Alschinger, F. Trager, Eur. Phys. J. D 34, 165 (2005) CrossRefADSGoogle Scholar
  19. 19.
    S.M. Wang, J.J. Xiao, K.W. Yu, Opt. Commun. 279, 384 (2007) CrossRefADSGoogle Scholar
  20. 20.
    F. Tam, C. Moran, N.J. Halas, J. Phys. Chem. B 108, 17290 (2004) CrossRefGoogle Scholar
  21. 21.
    J. Zhu, Appl. Phys. A 88, 673 (2007) CrossRefADSGoogle Scholar
  22. 22.
    J. Zhang, Y. Fu, M.H. Chowdhury, J.R. Lakowicz, J. Phys. Chem. C 112, 18 (2008) CrossRefGoogle Scholar
  23. 23.
    G. Pellegrini, G. Mattei, V. Bello, P. Mazzoldi, Mater. Sci. Eng. C 27, 1347 (2007) CrossRefGoogle Scholar
  24. 24.
    L.R. Hirsch, A.M. Gobin, A.R. Lowery, F. Tam, R.A. Drezek, N. Halas, J.L. West, Ann. Biomed. Eng. 34, 15 (2006) CrossRefGoogle Scholar
  25. 25.
    P.K. Jain, M.A. El-Sayed, Nano Lett. 7, 2854 (2007) CrossRefGoogle Scholar
  26. 26.
    C.J. Murphy, T.K. San, C.J. Orendorff, J.X. Gao, L. Gou, S.E. Hunyadi, T. Li, J. Phys. Chem. B 109, 13857 (2005) CrossRefGoogle Scholar
  27. 27.
    P.R. Evans, G.A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickinson, R.J. Pollard, A.V. Zayats, J. Phys. Chem. C 111, 12522 (2007) CrossRefGoogle Scholar
  28. 28.
    B.N. Khlebtsov, N.G. Khlebtsov, J. Phys. Chem. C 111, 11516 (2007) CrossRefGoogle Scholar
  29. 29.
    S. Link, M.B. Mohamed, M.A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999) CrossRefGoogle Scholar
  30. 30.
    F. Hao, C.L. Nehl, J.H. Hafner, P. Nordlander, Nano Lett. 7, 729 (2007) CrossRefGoogle Scholar
  31. 31.
    M.I. Stockman, S.V. Faleev, D.J. Bergman, Phys. Rev. Lett. 87, 167401 (2001) CrossRefADSGoogle Scholar
  32. 32.
    D.P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V.M. Shalaev, J.S. Suh, R. Botet, Phys. Rev. Lett. 72, 4149 (1994) CrossRefADSGoogle Scholar
  33. 33.
    H.X. Xu, J. Aizpurua, M. Kall, P. Apell, Phys. Rev. E 62, 4318 (2000) CrossRefADSGoogle Scholar
  34. 34.
    C. Oubre, P. Nordlander, J. Phys. Chem. B 109, 10042 (2005) CrossRefGoogle Scholar
  35. 35.
    Y.Y. Yu, S.S. Chang, C.L. Lee, C.R.C. Wang, J. Phys. Chem. B 101, 6661 (1997) CrossRefGoogle Scholar
  36. 36.
    E.A. Coronado, G.C. Schatz, J. Chem. Phys. 119, 3926 (2003) CrossRefADSGoogle Scholar
  37. 37.
    J. Perez-Juste, I. Pastoria-Santos, L.M. Liz-Marzan, P. Mulvaney, Coord. Chem. Rev. 249, 1870 (2005) CrossRefGoogle Scholar
  38. 38.
    A. Brioude, X.C. Jiang, M.P. Pileni, J. Phys. Chem. B 109, 13138 (2005) CrossRefGoogle Scholar
  39. 39.
    J. Aizpurua, G.W. Bryant, L.J. Richter, F.J.G. de Abajo, Phys. Rev. B 71, 235420 (2005) CrossRefADSGoogle Scholar
  40. 40.
    P.K. Jain, S. Eustis, M.A. El-Sayed, J. Phys. Chem. B 110, 18243 (2006) CrossRefGoogle Scholar
  41. 41.
    E. Prodan, P. Nordlander, J. Chem. Phys. 120, 5444 (2004) CrossRefADSGoogle Scholar
  42. 42.
    D.W. Brandl, C. Oubre, P. Nordlander, J. Chem. Phys. 123, 024701 (2005) CrossRefADSGoogle Scholar
  43. 43.
    H. Wang, D.W. Brandl, P. Nordlander, N.J. Halas, Acc. Chem. Res. 40, 53 (2007) CrossRefGoogle Scholar
  44. 44.
    D.W. Brandl, P. Nordlander, J. Chem. Phys. 126, 144708 (2007) CrossRefADSGoogle Scholar
  45. 45.
    Y.P. Wu, P. Nordlander, J. Chem. Phys. 125, 124708 (2006) CrossRefADSGoogle Scholar
  46. 46.
    W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, New York, 1966) MATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Physics and AstronomyLaboratory for Nanophotonics, Rice UniversityHoustonUSA

Personalised recommendations